麻豆小视频在线观看_中文黄色一级片_久久久成人精品_成片免费观看视频大全_午夜精品久久久久久久99热浪潮_成人一区二区三区四区

首頁 > 編程 > C > 正文

基于John Carmark密碼詳解

2020-01-26 16:17:14
字體:
來源:轉載
供稿:網友

有人在Quake III的源代碼里面發現這么一段用來求平方根的代碼:

/*================SquareRootFloat================*/

float SquareRootFloat(float number) {
    long i;
    float x, y;
    const float f = 1.5F;
    x = number * 0.5F;
    y  = number;
    i  = * ( long * ) &y;
    i  = 0x5f3759df - ( i >> 1 );  //注意這一行
    y  = * ( float * ) &i;
    y  = y * ( f - ( x * y * y ) );
    y  = y * ( f - ( x * y * y ) );
    return number * y;
}

x5f3759df? 這是個什么東西? 學過數值分析就知道,算法里面求平方根一般采用
的是無限逼近的方法,比如牛頓迭代法,抱歉當年我數值分析學的太爛,也講不清楚
。簡單來說比如求5的平方根,選一個猜測值比如2,那么我們可以這么算

/2 = 2.5; 2.5+2/2 = 2.25; 5/2.25 = xxx; 2.25+xxx/2 = xxxx ...
這樣反復迭代下去,結果必定收斂于sqrt(5),沒錯,一般的求平方根都是這么算的
。而卡馬克的不同之處在于,他選擇了一個神秘的猜測值0x5f3759df作為起始,使得
整個逼近過程收斂速度暴漲,對于Quake III所要求的精度10的負三次方,只需要一
次迭代就能夠得到結果。

好吧,如果這還不算牛b,接著看。

普渡大學的數學家Chris Lomont看了以后覺得有趣,決定要研究一下卡馬克弄出來的
這個猜測值有什么奧秘。Lomont也是個牛人,在精心研究之后從理論上也推導出一個
最佳猜測值,和卡馬克的數字非常接近, 0x5f37642f。卡馬克真牛,他是外星人嗎?


傳奇并沒有在這里結束。Lomont計算出結果以后非常滿意,于是拿自己計算出的起始
值和卡馬克的神秘數字做比賽,看看誰的數字能夠更快更精確的求得平方根。結果是
卡馬克贏了... 誰也不知道卡馬克是怎么找到這個數字的。

最后Lomont怒了,采用暴力方法一個數字一個數字試過來,終于找到一個比卡馬克數
字要好上那么一丁點的數字,雖然實際上這兩個數字所產生的結果非常近似,這個暴
力得出的數字是0x5f375a86。

Lomont為此寫下一篇論文,"Fast Inverse Square Root"。

我把這個函數用C#就行了一下改寫:

復制代碼 代碼如下:

using System;
 using System.Collections.Generic;
 using System.Text;

 namespace ConsoleApplication1
 {
     class Program
     {
         static void Main(string[] args)
        {
            Console.WriteLine("Carmark's method:");
            Console.WriteLine(SquareRootFloat(3.0f).ToString());
            Console.WriteLine("Use Math.Sqrt() method:");
            Console.WriteLine(((float)Math.Sqrt(3.0)).ToString());
            Console.Read();
        }

        private static float SquareRootFloat(float number)
        {

            long i;
            float x, y;
            const float f = 1.5F;
            x = number * 0.5F;
            y  = number;
            unsafe
            {
                i  = * ( long * ) &y;
                i  = 0x5f3759df - ( i >> 1 );  //注意這一行
                y  = * ( float * ) &i;
            }
            y  = y * ( f - ( x * y * y ) );
            y  = y * ( f - ( x * y * y ) );
            return number * y;
        }
    }
}


 第32、33行用了兩次牛頓迭代法,以達到一定的精度,當然你也可以自己控制精度,求出來的是y的平方根的倒數,所以最后返回為number*y.

SquareRootFloat函數最關鍵的一句就是 i=0x5f3759df-(i>>1);
以下是對它的部分解釋:

牛頓迭代法最關鍵的地方在于估計第一個近似根。如果該近似根與真根足夠靠近的話,那么只需要少數幾次迭代,就可以得到滿意的解。

接著,我們要設法估計第一個近似根。這也是上面的函數最神奇的地方。它通過某種方法算出了一個與真根非常接近的近似根,因此它只需要使用一次迭代過程就獲得了較滿意的解。它是怎樣做到的呢?所有的奧妙就在于這一行:

i = 0x5f3759df - (i >> 1); // 計算第一個近似根

超級莫名其妙的語句,不是嗎?但仔細想一下的話,還是可以理解的:float類型的數據在32位系統上是這樣表示的。

bits:31 30 ... 031:符號位30-23:共8位,保存指數(E)22-0:共23位,保存尾數(M)

所以,32位的浮點數用十進制實數表示就是:M*2^E。開根然后倒數就是:M^(-1/2)*2^(-E/2)。現在就十分清晰了。語句i>>1其工作就是將指數除以2,實現2^(E/2)的部分。而前面用一個常數減去它,目的就是得到M^(1/2)同時反轉所有指數的符號。

發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表

圖片精選

主站蜘蛛池模板: 九色免费视频 | 逼片 | 成年人黄视频 | 成人午夜激情网 | 国产午夜精品久久久久婷 | 91久久久久久久久久久久久久 | 性欧美视频在线观看 | 日韩精品中文字幕一区 | 黄色试看视频 | 久久久久久久一区二区三区 | 精品二区在线观看 | 亚洲小视频网站 | 热@国产 | 综合在线一区 | 2017亚洲男人天堂 | 最近高清无吗免费看 | 国产成人精品一区二区视频免费 | 青青草免费观看完整版高清 | 久久国产成人精品国产成人亚洲 | 草草视频免费观看 | 欧美第1页 | 男女羞羞视频在线免费观看 | 久久草在线观看视频 | 羞羞羞羞视频 | 91久久91久久精品免观看 | 久久久www成人免费毛片 | 欧美精品一区二区久久 | 毛片在线免费视频 | 欧美成人黄色小视频 | 亚洲va在线 | 午夜久| 日本一区二区三区视频在线 | 国产精品视频六区 | 国av在线| 免费久久久久 | 色视频一区二区 | 男人久久天堂 | 国产精品久久久久久久久久10秀 | 久久综合久久综合久久综合 | 精品国产一区二区三区蜜殿 | 国产精品久久久久久久久久iiiii |