直方圖均衡化(Histogram Equalization)是直方圖最典型的應用,是圖像點運算的一種。對于一幅輸入圖像,通過運算產生一幅輸出圖像,點運算是指輸出圖像的每個像素點的灰度值由輸入像素點決定,即:
直方圖均衡化是通過灰度變換將一幅圖像轉換為另一幅具有均衡直方圖,即在每個灰度級上都具有相同的象素點數過程。從分布圖上的理解就是希望原始圖像中y軸的值在新的分布中盡可能的展開。變換過程是利用累積分布函數對原始分布進行映射,生成新的均勻拉伸的分布。因此對應每個點的操作是尋找原始分布中y值在均勻分布中的位置,如下圖是理想的單純高斯分布映射的示意圖:
(圖片來源:《Learnning OpenCV》 p189)
OpenCV中有灰度直方圖均衡化的函數cvEqualizeHist,接口很明朗:
[cpp] view plain copyvoid cvEqualizeHist( const CvArr* src, CvArr* dst );注意此函數只能處理單通道的灰色圖像,對于彩色圖像,我們可以把每個信道分別均衡化,再Merge為彩色圖像。
均衡化后的直方圖:
參考shlkl99上傳的直方圖匹配代碼,將圖像規定化為高斯分布函數。
[cpp] view plain copy//將圖像與特定函數分布histv[]匹配 void myHistMatch(IplImage *img,double histv[]) { int bins = 256; int sizes[] = {bins}; CvHistogram *hist = cvCreateHist(1,sizes,CV_HIST_ARRAY); cvCalcHist(&img,hist); cvNormalizeHist(hist,1); double val_1 = 0.0; double val_2 = 0.0; uchar T[256] = {0}; double S[256] = {0}; double G[256] = {0}; for (int index = 0; index<256; ++index) { val_1 += cvQueryHistValue_1D(hist,index); val_2 += histv[index]; G[index] = val_2; S[index] = val_1; } double min_val = 0.0; int PG = 0; for ( int i = 0; i<256; ++i) { min_val = 1.0; for(int j = 0;j<256; ++j) { if( (G[j] - S[i]) < min_val && (G[j] - S[i]) >= 0) { min_val = (G[j] - S[i]); PG = j; } } T[i] = (uchar)PG; } uchar *p = NULL; for (int x = 0; x<img->height;++x) { p = (uchar*)(img->imageData + img->widthStep*x); for (int y = 0; y<img->width;++y) { p[y] = T[p[y]]; } } } // 生成高斯分布 void GenerateGaussModel(double model[]) { double m1,m2,sigma1,sigma2,A1,A2,K; m1 = 0.15; m2 = 0.75; sigma1 = 0.05; sigma2 = 0.05; A1 = 1; A2 = 0.07; K = 0.002; double c1 = A1*(1.0/(sqrt(2*CV_PI))*sigma1); double k1 = 2*sigma1*sigma1; double c2 = A2*(1.0/(sqrt(2*CV_PI))*sigma2); double k2 = 2*sigma2*sigma2; double p = 0.0,val= 0.0,z = 0.0; for (int zt = 0;zt < 256;++zt) { val = K + c1*exp(-(z-m1)*(z-m1)/k1) + c2*exp(-(z-m2)*(z-m2)/k2); model[zt] = val; p = p +val; z = z + 1.0/256; } for (int i = 0;i<256; ++i) { model[i] = model[i]/p; } }對示例圖片每個信道分別進行匹配處理
新聞熱點
疑難解答