Given an array of integers, return indices of the two numbers such that they add up to a specific target.
You may assume that each input would have exactly one solution, and you may not use the same element twice.
Example:
Given nums = [2, 7, 11, 15], target = 9,
Because nums[0] + nums[1] = 2 + 7 = 9, return [0, 1].
首先,最直接的思路就是遍歷數(shù)組,分兩次遍歷,找到結(jié)果后直接返回即可。直接上代碼:
public static int[] twoSum(int[] nums, int target) throws IllegalArgumentException { for (int i = 0; i < nums.length; i++) { for (int j = i + 1; j < nums.length; j++) { if (nums[j] == target - nums[i]) { return new int[] { i, j }; } } } throw new IllegalArgumentException("no num found");}這個(gè)算法的時(shí)間復(fù)雜度為
O(n^2)空間復(fù)雜度為:
O(1)將所有數(shù)組內(nèi)的下標(biāo)和值存儲(chǔ)到一個(gè)map中,然后只需要遍歷一次數(shù)組,每個(gè)數(shù)據(jù)進(jìn)行計(jì)算,算出對應(yīng)的差值,如果這個(gè)差值在map中存在,那么就直接返回兩個(gè)下標(biāo),否則拋出異常。
public static int[] twoSum(int[] nums, int target) { Map<Integer, Integer> map = new HashMap<>(); for (int i = 0; i < nums.length; i++) { map.put(nums[i], i); } for (int i = 0; i < nums.length; i++) { int complement = target - nums[i]; if (map.containsKey(complement) && map.get(complement) != i) { return new int[] { i, map.get(complement) }; } } throw new IllegalArgumentException("No two sum solution");}分析這個(gè)算法,可以得到,這個(gè)算法的時(shí)間復(fù)雜度為:
O(n)空間復(fù)雜度為:
O(n)是典型的空間換時(shí)間的算法。
還是空間換時(shí)間的思路,直接遍歷數(shù)組,計(jì)算差值,如果在map中存在這個(gè)值,直接返回,否則將數(shù)組中的值存入map中。
public static int[] twoSum(int[] nums, int target) { Map<Integer, Integer> map = new HashMap<>(); for (int i = 0; i < nums.length; i++) { int complement = target - nums[i]; if (map.containsKey(complement)) { return new int[] { map.get(complement), i }; } map.put(nums[i], i); } throw new IllegalArgumentException("No two sum solution");}分析這個(gè)算法,可以得到,這個(gè)算法的時(shí)間復(fù)雜度為:
O(n)空間復(fù)雜度為:
O(n)是典型的空間換時(shí)間的算法。
新聞熱點(diǎn)
疑難解答
圖片精選
網(wǎng)友關(guān)注