利用分治求一次逆序數,然后每次把第一個元素放到末尾,設該交換元素的值為x,設上一次求得的逆序數為y,那么此時的逆序數等于y - x + (n - x - 1),減去x是因為x作為第一個元素,其后共有x個元素小于x,移動x會導致逆序數減少x個,而加上 (n - x - 1) 是因為將x移動到末尾,其前面(n - 1)個元素中會有(n - x - 1)個元素大于x。
此題的復雜度在于求第一次逆序數O(nlgn),后面每次移動元素求更新后的逆序數時間是O(1),因此總的復雜度為(nlgn)。
AC代碼:
#include<cstdio>#include<algorithm>#include<cstring>using namespace std;const int maxn = 5000 +5;int a[maxn], c[maxn];int solve(int l, int r){ int mid = (l + r) / 2; if( l == r) return 0; int ans = 0; ans += solve(l, mid) + solve(mid + 1, r); // Merge int b[maxn]; int x = l, y= mid + 1; int k = 0; while(x <= mid && y <= r){ if(a[x] <= a[y]){ b[k++] = a[x++]; } else { ans += mid + 1 - x; b[k++] = a[y++]; } } while(x <= mid) b[k++] = a[x++]; while(y <= r) b[k++] = a[y++]; k = 0; for(int i = l; i <= r; ++i) a[i] = b[k++]; return ans;}int main(){ int n; while(scanf("%d", &n) == 1){ for(int i = 0; i < n; ++i){ scanf("%d", &a[i]); } memcpy(c, a, sizeof(a)); int ans = solve(0, n-1); int x = ans; for(int i = 0; i < n; ++i){ ans = min(ans, x + n - 1 - 2 * c[i]); x = x + n - 1 - 2 * c[i]; } PRintf("%d/n",ans); } return 0;}線段樹也能做這個題,每個區間保存的值代表[l, r]中總出現多少元素,每次加入x元素時,查找區間[x + 2, n]即可得到該元素的加入會增加多少逆序數。
貼上線段樹代碼:
#include<cstdio>#define min(x,y) (x) < (y) ? x : yconst int maxn = 4 * 5000 + 5;int a[5000 + 5];struct node{ int L, R; int cnt;}t[maxn];void Build(int l, int r, int cur){ t[cur].L = l, t[cur].R = r; t[cur].cnt = 0; if(l == r) return; int mid = (l + r) / 2; Build(l, mid, cur << 1); Build(mid + 1, r, (cur << 1) + 1);}void add(int c, int cur){ int l = t[cur].L, r = t[cur].R; t[cur].cnt++; if(l == r) return; int mid = (l + r) / 2; if(c <= mid) add(c, cur << 1); else add(c, (cur << 1) + 1);}int find1(int l, int r, int cur){ //search the Inversion (logn) int l1 = t[cur].L, r1 = t[cur].R; if(l == l1 && r == r1) return t[cur].cnt; int mid = (l1 + r1) / 2; if(r <= mid) return find1(l, r, cur << 1); else if(l >= mid + 1) return find1(l, r, (cur << 1) + 1); else return find1(l, mid, cur << 1) + find1(mid + 1, r, (cur << 1) + 1);}int main(){ int n; while(scanf("%d", &n) == 1){ Build(1, n, 1); int ans = 0; for(int i = 0; i < n; ++i){ scanf("%d", &a[i]); a[i]++; add(a[i], 1); if(a[i] + 1 <= n) ans += find1(a[i] + 1, n, 1); } int x = ans; for(int i = 0; i < n; ++i){ ans = min(ans, x + n + 1 - 2 * a[i]); x = x + n + 1 - 2 * a[i]; } printf("%d/n",ans); } return 0;}如有不當之處歡迎指出!
新聞熱點
疑難解答