一,今天我們來介紹下二叉查找樹,其定義是這樣子的:
(1)若左子樹不空,則左子樹上所有結(jié)點的值均小于或等于它的根結(jié)點的值;
(2)若右子樹不空,則右子樹上所有結(jié)點的值均大于或等于它的根結(jié)點的值;
(3)左、右子樹也分別為二叉排序樹;
樹的定義如下
typedef struct node
{
int data;
struct node *parent;
struct node *left;
struct node *right;
}Node;
class Tree
{
public:
Tree()
{
m_root = NULL;
}
int insertTree(int x)
{
return insert(m_root, x);
}
Node* findTree(int x)
{
return find(m_root, x);
}
int delTree(int x)
{
return delnode(m_root, x);
}
PRivate:
int insert(Node* &node, int x);
Node* find(Node* node, int x);
int delnode(Node* &node, int x);
private:
Node *m_root;
};
二,其查找操作是這樣子的:
如果根結(jié)點的關(guān)鍵字值等于查找的關(guān)鍵字,成功。否則,若小于根結(jié)點的關(guān)鍵字值,遞歸查左子樹。若大于根結(jié)點的關(guān)鍵字值,遞歸查右子樹。若子樹為空,查找不成功,如在遞歸的過程中遇到與關(guān)鍵字值相等的節(jié)點那么查找成功。
直接上代碼嘍
Node* Tree::find(Node* node, int x)
{
if(node == NULL)
{
return NULL;
}
if(x<node->data)
{
return find(node->left, x);
}
else if(x>node->data)
{
return find(node->right, x);
}
else
{
return node;
}
}
三,其刪除操作是這樣子的
1,首先查找給定值的節(jié)點,如果找不到,那么直接失敗
2,如果查找到的節(jié)點的左右子樹均為空,并且父節(jié)點也是空,那么直接把這個節(jié)點置空就可以了。否則直接把該節(jié)點的父節(jié)點的左子節(jié)點或者右子節(jié)點置空
3,如果查找到的節(jié)點的左子樹不是空的,但是右子樹不是空的,那么把該節(jié)點的左子節(jié)點的父節(jié)點指向該節(jié)點的父節(jié)點,(1):該節(jié)點的父節(jié)點是空的,那么把該樹的根節(jié)點指向該節(jié)點的左子節(jié)點(2):該節(jié)點的父節(jié)點不是空的,
4,如果查找到的節(jié)點的右子樹不是空的,與上述操作3相反
5,如果既有左子節(jié)點,又有右子節(jié)點,那么先找到其右字數(shù)中最小的節(jié)點,把最小節(jié)點的值復給一個臨時變量,然后遞歸刪除這個最小的節(jié)點,刪完自后,把臨時變量賦值給該節(jié)點的值就可以了。
上代碼嘍:
int Tree::delnode(Node* &node, int x)
{
int temp;
Node *find_node = findTree(x);
if(!find_node)
{
return -1;
}
else if(find_node->left==NULL && find_node->right==NULL)
{
if(find_node->parent==NULL)
{
cout << "delete root" << endl;
free(find_node);
node=NULL;
}
else
{
cout << "delete root not null" << endl;
if(find_node->parent->left->data == x)
{
find_node->parent->left = NULL;
}
else
{
find_node->parent->right = NULL;
}
}
}else if(find_node->left!=NULL && find_node->right==NULL)
{
cout << "delete left not null" << endl;
find_node->left->parent = find_node->parent;
if(find_node->parent == NULL)
{
node = find_node->left;
}
else
{
find_node->parent->left = find_node->left;
}
ree(find_node);
}
else if(find_node->right!=NULL && find_node->left==NULL)
{
cout << "delete right not null" << endl;
find_node->right->parent = find_node->parent;
if(find_node->parent == NULL)
{
node = find_node->right;
}
else
{
find_node->parent->right = find_node->right;
}
free(find_node);
}
else
{
Node *p = find_node->right;
while(p->left)
{
p = p->left;
}
int min_data = p->data;
delnode(node, min_data);
find_node->data = min_data;
}
return 0;
}
四,插入操作的步驟:
1,如果根節(jié)點為空,那么直接把新的節(jié)點賦值給根節(jié)點
2,如果值比根節(jié)點小,向左遞歸,否則向右遞歸
沒什么好說的,上代碼:
int Tree::insert(Node* &node, int x)
{
if(node == NULL)
{
cout << "insert null" << endl;
Node *p = (Node *)malloc(sizeof(Node));
p->left = NULL;
p->right= NULL;
p->parent = NULL;
p->data = x;
node = p;
return 0;
}
else
{
if(node->left==NULL && x<node->data)
{
Node *p = (Node *)malloc(sizeof(Node));
p->left = NULL;
p->right= NULL;
p->parent = node;
p->data = x;
node->left = p;
return 0;
}
else if(node->right==NULL && x>node->data)
{
Node *p = (Node *)malloc(sizeof(Node));
p->left = NULL;
p->right= NULL;
p->parent = node;
p->data = x;
node->right = p;
return 0;
}
else if(x<node->data)
{
insert(node->left, x);
}
else if(x>node->data)
{
insert(node->right, x);
}else
{
return -1;
}
}
}
歡迎掃描關(guān)注該公眾號 會定期推送一些技術(shù)文章
新聞熱點
疑難解答