麻豆小视频在线观看_中文黄色一级片_久久久成人精品_成片免费观看视频大全_午夜精品久久久久久久99热浪潮_成人一区二区三区四区

首頁 > 數據庫 > Redis > 正文

使用Redis實現延時任務的解決方案

2020-10-28 21:29:20
字體:
來源:轉載
供稿:網友

最近在生產環境剛好遇到了延時任務的場景,調研了一下目前主流的方案,分析了一下優劣并且敲定了最終的方案。這篇文章記錄了調研的過程,以及初步方案的實現。

候選方案對比

下面是想到的幾種實現延時任務的方案,總結了一下相應的優勢和劣勢。

方案 優勢 劣勢 選用場景
JDK 內置的延遲隊列 DelayQueue 實現簡單 數據內存態,不可靠 一致性相對低的場景
調度框架和 MySQL 進行短間隔輪詢 實現簡單,可靠性高 存在明顯的性能瓶頸 數據量較少實時性相對低的場景
RabbitMQ  DLX  TTL,一般稱為 死信隊列 方案 異步交互可以削峰 延時的時間長度不可控,如果數據需要持久化則性能會降低 -
調度框架和 Redis 進行短間隔輪詢 數據持久化,高性能 實現難度大 常見于支付結果回調方案
時間輪 實時性高 實現難度大,內存消耗大 實時性高的場景

如果應用的數據量不高,實時性要求比較低,選用調度框架和 MySQL 進行短間隔輪詢這個方案是最優的方案。但是筆者遇到的場景數據量相對比較大,實時性并不高,采用掃庫的方案一定會對 MySQL 實例造成比較大的壓力。記得很早之前,看過一個PPT叫《盒子科技聚合支付系統演進》,其中里面有一張圖片給予筆者一點啟發:

里面剛好用到了調度框架和 Redis 進行短間隔輪詢實現延時任務的方案,不過為了分攤應用的壓力,圖中的方案還做了分片處理。鑒于筆者當前業務緊迫,所以在第一期的方案暫時不考慮分片,只做了一個簡化版的實現。

由于PPT中沒有任何的代碼或者框架貼出,有些需要解決的技術點需要自行思考,下面會重現一次整個方案實現的詳細過程。

場景設計

實際的生產場景是筆者負責的某個系統需要對接一個外部的資金方,每一筆資金下單后需要延時30分鐘推送對應的附件。這里簡化為一個訂單信息數據延遲處理的場景,就是每一筆下單記錄一條訂單消息(暫時叫做 OrderMessage ),訂單消息需要延遲5到15秒后進行異步處理。

否決的候選方案實現思路

下面介紹一下其它四個不選用的候選方案,結合一些偽代碼和流程分析一下實現過程。

JDK內置延遲隊列

DelayQueue 是一個阻塞隊列的實現,它的隊列元素必須是 Delayed 的子類,這里做個簡單的例子:

public class DelayQueueMain {  private static final Logger LOGGER = LoggerFactory.getLogger(DelayQueueMain.class);  public static void main(String[] args) throws Exception {    DelayQueue<OrderMessage> queue = new DelayQueue<>();    // 默認延遲5秒    OrderMessage message = new OrderMessage("ORDER_ID_10086");    queue.add(message);    // 延遲6秒    message = new OrderMessage("ORDER_ID_10087", 6);    queue.add(message);    // 延遲10秒    message = new OrderMessage("ORDER_ID_10088", 10);    queue.add(message);    ExecutorService executorService = Executors.newSingleThreadExecutor(r -> {      Thread thread = new Thread(r);      thread.setName("DelayWorker");      thread.setDaemon(true);      return thread;    });    LOGGER.info("開始執行調度線程...");    executorService.execute(() -> {      while (true) {        try {          OrderMessage task = queue.take();          LOGGER.info("延遲處理訂單消息,{}", task.getDescription());        } catch (Exception e) {          LOGGER.error(e.getMessage(), e);        }      }    });    Thread.sleep(Integer.MAX_VALUE);  }  private static class OrderMessage implements Delayed {    private static final DateTimeFormatter F = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");    /**     * 默認延遲5000毫秒     */    private static final long DELAY_MS = 1000L * 5;    /**     * 訂單ID     */    private final String orderId;    /**     * 創建時間戳     */    private final long timestamp;    /**     * 過期時間     */    private final long expire;    /**     * 描述     */    private final String description;    public OrderMessage(String orderId, long expireSeconds) {      this.orderId = orderId;      this.timestamp = System.currentTimeMillis();      this.expire = this.timestamp + expireSeconds * 1000L;      this.description = String.format("訂單[%s]-創建時間為:%s,超時時間為:%s", orderId,          LocalDateTime.ofInstant(Instant.ofEpochMilli(timestamp), ZoneId.systemDefault()).format(F),          LocalDateTime.ofInstant(Instant.ofEpochMilli(expire), ZoneId.systemDefault()).format(F));    }    public OrderMessage(String orderId) {      this.orderId = orderId;      this.timestamp = System.currentTimeMillis();      this.expire = this.timestamp + DELAY_MS;      this.description = String.format("訂單[%s]-創建時間為:%s,超時時間為:%s", orderId,          LocalDateTime.ofInstant(Instant.ofEpochMilli(timestamp), ZoneId.systemDefault()).format(F),          LocalDateTime.ofInstant(Instant.ofEpochMilli(expire), ZoneId.systemDefault()).format(F));    }    public String getOrderId() {      return orderId;    }    public long getTimestamp() {      return timestamp;    }    public long getExpire() {      return expire;    }    public String getDescription() {      return description;    }    @Override    public long getDelay(TimeUnit unit) {      return unit.convert(this.expire - System.currentTimeMillis(), TimeUnit.MILLISECONDS);    }    @Override    public int compareTo(Delayed o) {      return (int) (this.getDelay(TimeUnit.MILLISECONDS) - o.getDelay(TimeUnit.MILLISECONDS));    }  }}

注意一下, OrderMessage 實現 Delayed 接口,關鍵是需要實現 Delayed#getDelay()Delayed#compareTo() 。運行一下 main() 方法:

10:16:08.240 [main] INFO club.throwable.delay.DelayQueueMain - 開始執行調度線程...10:16:13.224 [DelayWorker] INFO club.throwable.delay.DelayQueueMain - 延遲處理訂單消息,訂單[ORDER_ID_10086]-創建時間為:2019-08-20 10:16:08,超時時間為:2019-08-20 10:16:1310:16:14.237 [DelayWorker] INFO club.throwable.delay.DelayQueueMain - 延遲處理訂單消息,訂單[ORDER_ID_10087]-創建時間為:2019-08-20 10:16:08,超時時間為:2019-08-20 10:16:1410:16:18.237 [DelayWorker] INFO club.throwable.delay.DelayQueueMain - 延遲處理訂單消息,訂單[ORDER_ID_10088]-創建時間為:2019-08-20 10:16:08,超時時間為:2019-08-20 10:16:18

調度框架 + MySQL

使用調度框架對 MySQL 表進行短間隔輪詢是實現難度比較低的方案,通常服務剛上線,表數據不多并且實時性不高的情況下應該首選這個方案。不過要注意以下幾點:

MySQL

引入 QuartzMySQL 的Java驅動包和 spring-boot-starter-jdbc (這里只是為了方便用相對輕量級的框架實現,生產中可以按場景按需選擇其他更合理的框架):

<dependency>  <groupId>mysql</groupId>  <artifactId>mysql-connector-java</artifactId>  <version>5.1.48</version>  <scope>test</scope></dependency><dependency>  <groupId>org.springframework.boot</groupId>  <artifactId>spring-boot-starter-jdbc</artifactId>  <version>2.1.7.RELEASE</version>  <scope>test</scope></dependency><dependency>  <groupId>org.quartz-scheduler</groupId>  <artifactId>quartz</artifactId>  <version>2.3.1</version>  <scope>test</scope></dependency>

假設表設計如下:

CREATE DATABASE `delayTask` CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_520_ci;USE `delayTask`;CREATE TABLE `t_order_message`(  id      BIGINT UNSIGNED PRIMARY KEY AUTO_INCREMENT,  order_id   VARCHAR(50) NOT NULL COMMENT '訂單ID',  create_time DATETIME  NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '創建日期時間',  edit_time  DATETIME  NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '修改日期時間',  retry_times TINYINT   NOT NULL DEFAULT 0 COMMENT '重試次數',  order_status TINYINT   NOT NULL DEFAULT 0 COMMENT '訂單狀態',  INDEX idx_order_id (order_id),  INDEX idx_create_time (create_time)) COMMENT '訂單信息表';# 寫入兩條測試數據INSERT INTO t_order_message(order_id) VALUES ('10086'),('10087');

編寫代碼:

// 常量public class OrderConstants {  public static final int MAX_RETRY_TIMES = 5;  public static final int PENDING = 0;  public static final int SUCCESS = 1;  public static final int FAIL = -1;  public static final int LIMIT = 10;}// 實體@Builder@Datapublic class OrderMessage {  private Long id;  private String orderId;  private LocalDateTime createTime;  private LocalDateTime editTime;  private Integer retryTimes;  private Integer orderStatus;}// DAO@RequiredArgsConstructorpublic class OrderMessageDao {  private final JdbcTemplate jdbcTemplate;  private static final ResultSetExtractor<List<OrderMessage>> M = r -> {    List<OrderMessage> list = Lists.newArrayList();    while (r.next()) {      list.add(OrderMessage.builder()          .id(r.getLong("id"))          .orderId(r.getString("order_id"))          .createTime(r.getTimestamp("create_time").toLocalDateTime())          .editTime(r.getTimestamp("edit_time").toLocalDateTime())          .retryTimes(r.getInt("retry_times"))          .orderStatus(r.getInt("order_status"))          .build());    }    return list;  };  public List<OrderMessage> selectPendingRecords(LocalDateTime start,                          LocalDateTime end,                          List<Integer> statusList,                          int maxRetryTimes,                          int limit) {    StringJoiner joiner = new StringJoiner(",");    statusList.forEach(s -> joiner.add(String.valueOf(s)));    return jdbcTemplate.query("SELECT * FROM t_order_message WHERE create_time >= ? AND create_time <= ? " +            "AND order_status IN (?) AND retry_times < ? LIMIT ?",        p -> {          p.setTimestamp(1, Timestamp.valueOf(start));          p.setTimestamp(2, Timestamp.valueOf(end));          p.setString(3, joiner.toString());          p.setInt(4, maxRetryTimes);          p.setInt(5, limit);        }, M);  }  public int updateOrderStatus(Long id, int status) {    return jdbcTemplate.update("UPDATE t_order_message SET order_status = ?,edit_time = ? WHERE id =?",        p -> {          p.setInt(1, status);          p.setTimestamp(2, Timestamp.valueOf(LocalDateTime.now()));          p.setLong(3, id);        });  }}// Service@RequiredArgsConstructorpublic class OrderMessageService {  private static final Logger LOGGER = LoggerFactory.getLogger(OrderMessageService.class);  private final OrderMessageDao orderMessageDao;  private static final List<Integer> STATUS = Lists.newArrayList();  static {    STATUS.add(OrderConstants.PENDING);    STATUS.add(OrderConstants.FAIL);  }  public void executeDelayJob() {    LOGGER.info("訂單處理定時任務開始執行......");    LocalDateTime end = LocalDateTime.now();    // 一天前    LocalDateTime start = end.minusDays(1);    List<OrderMessage> list = orderMessageDao.selectPendingRecords(start, end, STATUS, OrderConstants.MAX_RETRY_TIMES, OrderConstants.LIMIT);    if (!list.isEmpty()) {      for (OrderMessage m : list) {        LOGGER.info("處理訂單[{}],狀態由{}更新為{}", m.getOrderId(), m.getOrderStatus(), OrderConstants.SUCCESS);        // 這里其實可以優化為批量更新        orderMessageDao.updateOrderStatus(m.getId(), OrderConstants.SUCCESS);      }    }    LOGGER.info("訂單處理定時任務開始完畢......");  }}// Job@DisallowConcurrentExecutionpublic class OrderMessageDelayJob implements Job {  @Override  public void execute(JobExecutionContext jobExecutionContext) throws JobExecutionException {    OrderMessageService service = (OrderMessageService) jobExecutionContext.getMergedJobDataMap().get("orderMessageService");    service.executeDelayJob();  }  public static void main(String[] args) throws Exception {    HikariConfig config = new HikariConfig();    config.setJdbcUrl("jdbc:mysql://localhost:3306/delayTask?useSSL=false&characterEncoding=utf8");    config.setDriverClassName(Driver.class.getName());    config.setUsername("root");    config.setPassword("root");    HikariDataSource dataSource = new HikariDataSource(config);    OrderMessageDao orderMessageDao = new OrderMessageDao(new JdbcTemplate(dataSource));    OrderMessageService service = new OrderMessageService(orderMessageDao);    // 內存模式的調度器    StdSchedulerFactory factory = new StdSchedulerFactory();    Scheduler scheduler = factory.getScheduler();    // 這里沒有用到IOC容器,直接用Quartz數據集合傳遞服務引用    JobDataMap jobDataMap = new JobDataMap();    jobDataMap.put("orderMessageService", service);    // 新建Job    JobDetail job = JobBuilder.newJob(OrderMessageDelayJob.class)        .withIdentity("orderMessageDelayJob", "delayJob")        .usingJobData(jobDataMap)        .build();    // 新建觸發器,10秒執行一次    Trigger trigger = TriggerBuilder.newTrigger()        .withIdentity("orderMessageDelayTrigger", "delayJob")        .withSchedule(SimpleScheduleBuilder.simpleSchedule().withIntervalInSeconds(10).repeatForever())        .build();    scheduler.scheduleJob(job, trigger);    // 啟動調度器    scheduler.start();    Thread.sleep(Integer.MAX_VALUE);  }}

這個例子里面用了 create_time 做輪詢,實際上可以添加一個調度時間 schedule_time 列做輪詢,這樣子才能更容易定制空閑時和忙碌時候的調度策略。上面的示例的運行效果如下:

11:58:27.202 [main] INFO org.quartz.core.QuartzScheduler - Scheduler meta-data: Quartz Scheduler (v2.3.1) 'DefaultQuartzScheduler' with instanceId 'NON_CLUSTERED' Scheduler class: 'org.quartz.core.QuartzScheduler' - running locally. NOT STARTED. Currently in standby mode. Number of jobs executed: 0 Using thread pool 'org.quartz.simpl.SimpleThreadPool' - with 10 threads. Using job-store 'org.quartz.simpl.RAMJobStore' - which does not support persistence. and is not clustered.11:58:27.202 [main] INFO org.quartz.impl.StdSchedulerFactory - Quartz scheduler 'DefaultQuartzScheduler' initialized from default resource file in Quartz package: 'quartz.properties'11:58:27.202 [main] INFO org.quartz.impl.StdSchedulerFactory - Quartz scheduler version: 2.3.111:58:27.209 [main] INFO org.quartz.core.QuartzScheduler - Scheduler DefaultQuartzScheduler_$_NON_CLUSTERED started.11:58:27.212 [DefaultQuartzScheduler_QuartzSchedulerThread] DEBUG org.quartz.core.QuartzSchedulerThread - batch acquisition of 1 triggers11:58:27.217 [DefaultQuartzScheduler_QuartzSchedulerThread] DEBUG org.quartz.simpl.PropertySettingJobFactory - Producing instance of Job 'delayJob.orderMessageDelayJob', class=club.throwable.jdbc.OrderMessageDelayJob11:58:27.219 [HikariPool-1 connection adder] DEBUG com.zaxxer.hikari.pool.HikariPool - HikariPool-1 - Added connection com.mysql.jdbc.JDBC4Connection@10eb8c5311:58:27.220 [DefaultQuartzScheduler_QuartzSchedulerThread] DEBUG org.quartz.core.QuartzSchedulerThread - batch acquisition of 0 triggers11:58:27.221 [DefaultQuartzScheduler_Worker-1] DEBUG org.quartz.core.JobRunShell - Calling execute on job delayJob.orderMessageDelayJob11:58:34.440 [DefaultQuartzScheduler_Worker-1] INFO club.throwable.jdbc.OrderMessageService - 訂單處理定時任務開始執行......11:58:34.451 [HikariPool-1 connection adder] DEBUG com.zaxxer.hikari.pool.HikariPool - HikariPool-1 - Added connection com.mysql.jdbc.JDBC4Connection@3d27ece411:58:34.459 [HikariPool-1 connection adder] DEBUG com.zaxxer.hikari.pool.HikariPool - HikariPool-1 - Added connection com.mysql.jdbc.JDBC4Connection@64e808af11:58:34.470 [HikariPool-1 connection adder] DEBUG com.zaxxer.hikari.pool.HikariPool - HikariPool-1 - Added connection com.mysql.jdbc.JDBC4Connection@79c8c2b711:58:34.477 [HikariPool-1 connection adder] DEBUG com.zaxxer.hikari.pool.HikariPool - HikariPool-1 - Added connection com.mysql.jdbc.JDBC4Connection@19a6236911:58:34.485 [HikariPool-1 connection adder] DEBUG com.zaxxer.hikari.pool.HikariPool - HikariPool-1 - Added connection com.mysql.jdbc.JDBC4Connection@1673d01711:58:34.485 [HikariPool-1 connection adder] DEBUG com.zaxxer.hikari.pool.HikariPool - HikariPool-1 - After adding stats (total=10, active=0, idle=10, waiting=0)11:58:34.559 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.core.JdbcTemplate - Executing prepared SQL query11:58:34.565 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.core.JdbcTemplate - Executing prepared SQL statement [SELECT * FROM t_order_message WHERE create_time >= ? AND create_time <= ? AND order_status IN (?) AND retry_times < ? LIMIT ?]11:58:34.645 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.datasource.DataSourceUtils - Fetching JDBC Connection from DataSource11:58:35.210 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.core.JdbcTemplate - SQLWarning ignored: SQL state '22007', error code '1292', message [Truncated incorrect DOUBLE value: '0,-1']11:58:35.335 [DefaultQuartzScheduler_Worker-1] INFO club.throwable.jdbc.OrderMessageService - 處理訂單[10086],狀態由0更新為111:58:35.342 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.core.JdbcTemplate - Executing prepared SQL update11:58:35.346 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.core.JdbcTemplate - Executing prepared SQL statement [UPDATE t_order_message SET order_status = ?,edit_time = ? WHERE id =?]11:58:35.347 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.datasource.DataSourceUtils - Fetching JDBC Connection from DataSource11:58:35.354 [DefaultQuartzScheduler_Worker-1] INFO club.throwable.jdbc.OrderMessageService - 處理訂單[10087],狀態由0更新為111:58:35.355 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.core.JdbcTemplate - Executing prepared SQL update11:58:35.355 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.core.JdbcTemplate - Executing prepared SQL statement [UPDATE t_order_message SET order_status = ?,edit_time = ? WHERE id =?]11:58:35.355 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.datasource.DataSourceUtils - Fetching JDBC Connection from DataSource11:58:35.361 [DefaultQuartzScheduler_Worker-1] INFO club.throwable.jdbc.OrderMessageService - 訂單處理定時任務開始完畢......11:58:35.363 [DefaultQuartzScheduler_QuartzSchedulerThread] DEBUG org.quartz.core.QuartzSchedulerThread - batch acquisition of 1 triggers11:58:37.206 [DefaultQuartzScheduler_QuartzSchedulerThread] DEBUG org.quartz.simpl.PropertySettingJobFactory - Producing instance of Job 'delayJob.orderMessageDelayJob', class=club.throwable.jdbc.OrderMessageDelayJob11:58:37.206 [DefaultQuartzScheduler_QuartzSchedulerThread] DEBUG org.quartz.core.QuartzSchedulerThread - batch acquisition of 0 triggers

RabbitMQ死信隊列

使用 RabbitMQ 死信隊列依賴于 RabbitMQ 的兩個特性: TTLDLX

TTLTime To Live ,消息存活時間,包括兩個維度:隊列消息存活時間和消息本身的存活時間。

DLXDead Letter Exchange ,死信交換器。

畫個圖描述一下這兩個特性:

下面為了簡單起見, TTL 使用了針對隊列的維度。引入 RabbitMQ 的Java驅動:

<dependency>  <groupId>com.rabbitmq</groupId>  <artifactId>amqp-client</artifactId>  <version>5.7.3</version>  <scope>test</scope></dependency>

代碼如下:

public class DlxMain {  private static final DateTimeFormatter F = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");  private static final Logger LOGGER = LoggerFactory.getLogger(DlxMain.class);  public static void main(String[] args) throws Exception {    ConnectionFactory factory = new ConnectionFactory();    Connection connection = factory.newConnection();    Channel producerChannel = connection.createChannel();    Channel consumerChannel = connection.createChannel();    // dlx交換器名稱為dlx.exchange,類型是direct,綁定鍵為dlx.key,隊列名為dlx.queue    producerChannel.exchangeDeclare("dlx.exchange", "direct");    producerChannel.queueDeclare("dlx.queue", false, false, false, null);    producerChannel.queueBind("dlx.queue", "dlx.exchange", "dlx.key");    Map<String, Object> queueArgs = new HashMap<>();    // 設置隊列消息過期時間,5秒    queueArgs.put("x-message-ttl", 5000);    // 指定DLX相關參數    queueArgs.put("x-dead-letter-exchange", "dlx.exchange");    queueArgs.put("x-dead-letter-routing-key", "dlx.key");    // 聲明業務隊列    producerChannel.queueDeclare("business.queue", false, false, false, queueArgs);    ExecutorService executorService = Executors.newSingleThreadExecutor(r -> {      Thread thread = new Thread(r);      thread.setDaemon(true);      thread.setName("DlxConsumer");      return thread;    });    // 啟動消費者    executorService.execute(() -> {      try {        consumerChannel.basicConsume("dlx.queue", true, new DlxConsumer(consumerChannel));      } catch (IOException e) {        LOGGER.error(e.getMessage(), e);      }    });    OrderMessage message = new OrderMessage("10086");    producerChannel.basicPublish("", "business.queue", MessageProperties.TEXT_PLAIN,        message.getDescription().getBytes(StandardCharsets.UTF_8));    LOGGER.info("發送消息成功,訂單ID:{}", message.getOrderId());    message = new OrderMessage("10087");    producerChannel.basicPublish("", "business.queue", MessageProperties.TEXT_PLAIN,        message.getDescription().getBytes(StandardCharsets.UTF_8));    LOGGER.info("發送消息成功,訂單ID:{}", message.getOrderId());    message = new OrderMessage("10088");    producerChannel.basicPublish("", "business.queue", MessageProperties.TEXT_PLAIN,        message.getDescription().getBytes(StandardCharsets.UTF_8));    LOGGER.info("發送消息成功,訂單ID:{}", message.getOrderId());    Thread.sleep(Integer.MAX_VALUE);  }  private static class DlxConsumer extends DefaultConsumer {    DlxConsumer(Channel channel) {      super(channel);    }    @Override    public void handleDelivery(String consumerTag,                  Envelope envelope,                  AMQP.BasicProperties properties,                  byte[] body) throws IOException {      LOGGER.info("處理消息成功:{}", new String(body, StandardCharsets.UTF_8));    }  }  private static class OrderMessage {    private final String orderId;    private final long timestamp;    private final String description;    OrderMessage(String orderId) {      this.orderId = orderId;      this.timestamp = System.currentTimeMillis();      this.description = String.format("訂單[%s],訂單創建時間為:%s", orderId,          LocalDateTime.ofInstant(Instant.ofEpochMilli(timestamp), ZoneId.systemDefault()).format(F));    }    public String getOrderId() {      return orderId;    }    public long getTimestamp() {      return timestamp;    }    public String getDescription() {      return description;    }  }}

運行 main() 方法結果如下:

16:35:58.638 [main] INFO club.throwable.dlx.DlxMain - 發送消息成功,訂單ID:1008616:35:58.641 [main] INFO club.throwable.dlx.DlxMain - 發送消息成功,訂單ID:1008716:35:58.641 [main] INFO club.throwable.dlx.DlxMain - 發送消息成功,訂單ID:1008816:36:03.646 [pool-1-thread-4] INFO club.throwable.dlx.DlxMain - 處理消息成功:訂單[10086],訂單創建時間為:2019-08-20 16:35:5816:36:03.670 [pool-1-thread-5] INFO club.throwable.dlx.DlxMain - 處理消息成功:訂單[10087],訂單創建時間為:2019-08-20 16:35:5816:36:03.670 [pool-1-thread-6] INFO club.throwable.dlx.DlxMain - 處理消息成功:訂單[10088],訂單創建時間為:2019-08-20 16:35:58

時間輪

時間輪 TimingWheel 是一種高效、低延遲的調度數據結構,底層采用數組實現存儲任務列表的環形隊列,示意圖如下:

這里暫時不對時間輪和其實現作分析,只簡單舉例說明怎么使用時間輪實現延時任務。這里使用 Netty 提供的 HashedWheelTimer ,引入依賴:

<dependency>  <groupId>io.netty</groupId>  <artifactId>netty-common</artifactId>  <version>4.1.39.Final</version></dependency>

代碼如下:

public class HashedWheelTimerMain {  private static final DateTimeFormatter F = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss.SSS");  public static void main(String[] args) throws Exception {    AtomicInteger counter = new AtomicInteger();    ThreadFactory factory = r -> {      Thread thread = new Thread(r);      thread.setDaemon(true);      thread.setName("HashedWheelTimerWorker-" + counter.getAndIncrement());      return thread;    };    // tickDuration - 每tick一次的時間間隔, 每tick一次就會到達下一個槽位    // unit - tickDuration的時間單位    // ticksPerWhee - 時間輪中的槽位數    Timer timer = new HashedWheelTimer(factory, 1, TimeUnit.SECONDS, 60);    TimerTask timerTask = new DefaultTimerTask("10086");    timer.newTimeout(timerTask, 5, TimeUnit.SECONDS);    timerTask = new DefaultTimerTask("10087");    timer.newTimeout(timerTask, 10, TimeUnit.SECONDS);    timerTask = new DefaultTimerTask("10088");    timer.newTimeout(timerTask, 15, TimeUnit.SECONDS);    Thread.sleep(Integer.MAX_VALUE);  }  private static class DefaultTimerTask implements TimerTask {    private final String orderId;    private final long timestamp;    public DefaultTimerTask(String orderId) {      this.orderId = orderId;      this.timestamp = System.currentTimeMillis();    }    @Override    public void run(Timeout timeout) throws Exception {      System.out.println(String.format("任務執行時間:%s,訂單創建時間:%s,訂單ID:%s",          LocalDateTime.now().format(F), LocalDateTime.ofInstant(Instant.ofEpochMilli(timestamp), ZoneId.systemDefault()).format(F), orderId));    }  }}

運行結果:

任務執行時間:2019-08-20 17:19:49.310,訂單創建時間:2019-08-20 17:19:43.294,訂單ID:10086
任務執行時間:2019-08-20 17:19:54.297,訂單創建時間:2019-08-20 17:19:43.301,訂單ID:10087
任務執行時間:2019-08-20 17:19:59.297,訂單創建時間:2019-08-20 17:19:43.301,訂單ID:10088

一般來說,任務執行的時候應該使用另外的業務線程池,以免阻塞時間輪本身的運動。

選用的方案實現過程

最終選用了基于 Redis 的有序集合 Sorted SetQuartz 短輪詢進行實現。具體方案是:

  • 訂單創建的時候,訂單ID和當前時間戳分別作為 Sorted Set 的member和score添加到訂單隊列 Sorted Set 中。
  • 訂單創建的時候,訂單ID和推送內容 JSON 字符串分別作為field和value添加到訂單隊列內容 Hash 中。
  • 第1步和第2步操作的時候用 Lua 腳本保證原子性。
  • 使用一個異步線程通過 Sorted Set 的命令 ZREVRANGEBYSCORE 彈出指定數量的訂單ID對應的訂單隊列內容 Hash 中的訂單推送內容數據進行處理。

對于第4點處理有兩種方案:

  • 方案一:彈出訂單內容數據的同時進行數據刪除,也就是 ZREVRANGEBYSCOREZREMHDEL 命令要在同一個 Lua 腳本中執行,這樣的話 Lua 腳本的編寫難度大,并且由于彈出數據已經在 Redis 中刪除,如果數據處理失敗則可能需要從數據庫重新查詢補償。
  • 方案二:彈出訂單內容數據之后,在數據處理完成的時候再主動刪除訂單隊列 Sorted Set 和訂單隊列內容 Hash 中對應的數據,這樣的話需要控制并發,有重復執行的可能性。

最終暫時選用了方案一,也就是從 Sorted Set 彈出訂單ID并且從 Hash 中獲取完推送數據之后馬上刪除這兩個集合中對應的數據。方案的流程圖大概是這樣:

這里先詳細說明一下用到的 Redis 命令。

Sorted Set相關命令

ZADD 命令 - 將一個或多個成員元素及其分數值加入到有序集當中。

ZADD KEY SCORE1 VALUE1.. SCOREN VALUEN

ZREVRANGEBYSCORE 命令 - 返回有序集中指定分數區間內的所有的成員。有序集成員按分數值遞減(從大到小)的次序排列。

ZREVRANGEBYSCORE key max min [WITHSCORES] [LIMIT offset count]

max:分數區間 - 最大分數。 min:分數區間 - 最小分數。 WITHSCORES:可選參數,是否返回分數值,指定則會返回得分值。 LIMIT:可選參數,offset和count原理和 MySQLLIMIT offset,size 一致,如果不指定此參數則返回整個集合的數據。 ZREM 命令 - 用于移除有序集中的一個或多個成員,不存在的成員將被忽略。

ZREM key member [member ...]

Hash相關命令 HMSET 命令 - 同時將多個field-value(字段-值)對設置到哈希表中。

HMSET KEY_NAME FIELD1 VALUE1 ...FIELDN VALUEN

HDEL 命令 - 刪除哈希表key中的一個或多個指定字段,不存在的字段將被忽略。

HDEL KEY_NAME FIELD1.. FIELDN

Lua相關 加載 Lua 腳本并且返回腳本的 SHA-1 字符串: SCRIPT LOAD script 。 執行已經加載的 Lua 腳本: EVALSHA sha1 numkeys key [key ...] arg [arg ...]unpack 函數可以把 table 類型的參數轉化為可變參數,不過需要注意的是 unpack 函數必須使用在非變量定義的函數調用的最后一個參數,否則會失效,詳細見 Stackoverflow 的提問 table.unpack() only returns the first element 。

PS:如果不熟悉Lua語言,建議系統學習一下,因為想用好Redis,一定離不開Lua。

引入依賴:

<dependencyManagement>  <dependencies>    <dependency>      <groupId>org.springframework.boot</groupId>      <artifactId>spring-boot-dependencies</artifactId>      <version>2.1.7.RELEASE</version>      <type>pom</type>      <scope>import</scope>    </dependency>  </dependencies></dependencyManagement><dependencies>  <dependency>    <groupId>org.quartz-scheduler</groupId>    <artifactId>quartz</artifactId>    <version>2.3.1</version>  </dependency>  <dependency>    <groupId>redis.clients</groupId>    <artifactId>jedis</artifactId>    <version>3.1.0</version>  </dependency>  <dependency>    <groupId>org.springframework.boot</groupId>    <artifactId>spring-boot-starter-web</artifactId>  </dependency>  <dependency>    <groupId>org.springframework.boot</groupId>    <artifactId>spring-boot-starter-jdbc</artifactId>  </dependency>    <dependency>    <groupId>org.springframework</groupId>    <artifactId>spring-context-support</artifactId>    <version>5.1.9.RELEASE</version>  </dependency>   <dependency>    <groupId>org.projectlombok</groupId>    <artifactId>lombok</artifactId>    <version>1.18.8</version>    <scope>provided</scope>  </dependency>  <dependency>    <groupId>com.alibaba</groupId>    <artifactId>fastjson</artifactId>    <version>1.2.59</version>  </dependency>    </dependencies>

編寫 Lua 腳本 /lua/enqueue.lua/lua/dequeue.lua

-- /lua/enqueue.lualocal zset_key = KEYS[1]local hash_key = KEYS[2]local zset_value = ARGV[1]local zset_score = ARGV[2]local hash_field = ARGV[3]local hash_value = ARGV[4]redis.call('ZADD', zset_key, zset_score, zset_value)redis.call('HSET', hash_key, hash_field, hash_value)return nil-- /lua/dequeue.lua-- 參考jesque的部分Lua腳本實現local zset_key = KEYS[1]local hash_key = KEYS[2]local min_score = ARGV[1]local max_score = ARGV[2]local offset = ARGV[3]local limit = ARGV[4]-- TYPE命令的返回結果是{'ok':'zset'}這樣子,這里利用next做一輪迭代local status, type = next(redis.call('TYPE', zset_key))if status ~= nil and status == 'ok' then  if type == 'zset' then    local list = redis.call('ZREVRANGEBYSCORE', zset_key, max_score, min_score, 'LIMIT', offset, limit)    if list ~= nil and #list > 0 then      -- unpack函數能把table轉化為可變參數      redis.call('ZREM', zset_key, unpack(list))      local result = redis.call('HMGET', hash_key, unpack(list))      redis.call('HDEL', hash_key, unpack(list))      return result    end  endendreturn nil

編寫核心API代碼:

// Jedis提供者@Componentpublic class JedisProvider implements InitializingBean {  private JedisPool jedisPool;  @Override  public void afterPropertiesSet() throws Exception {    jedisPool = new JedisPool();  }  public Jedis provide(){    return jedisPool.getResource();  }}// OrderMessage@Datapublic class OrderMessage {  private String orderId;  private BigDecimal amount;  private Long userId;}// 延遲隊列接口public interface OrderDelayQueue {  void enqueue(OrderMessage message);  List<OrderMessage> dequeue(String min, String max, String offset, String limit);  List<OrderMessage> dequeue();  String enqueueSha();  String dequeueSha();}// 延遲隊列實現類@RequiredArgsConstructor@Componentpublic class RedisOrderDelayQueue implements OrderDelayQueue, InitializingBean {  private static final String MIN_SCORE = "0";  private static final String OFFSET = "0";  private static final String LIMIT = "10";  private static final String ORDER_QUEUE = "ORDER_QUEUE";  private static final String ORDER_DETAIL_QUEUE = "ORDER_DETAIL_QUEUE";  private static final String ENQUEUE_LUA_SCRIPT_LOCATION = "/lua/enqueue.lua";  private static final String DEQUEUE_LUA_SCRIPT_LOCATION = "/lua/dequeue.lua";  private static final AtomicReference<String> ENQUEUE_LUA_SHA = new AtomicReference<>();  private static final AtomicReference<String> DEQUEUE_LUA_SHA = new AtomicReference<>();  private static final List<String> KEYS = Lists.newArrayList();  private final JedisProvider jedisProvider;  static {    KEYS.add(ORDER_QUEUE);    KEYS.add(ORDER_DETAIL_QUEUE);  }  @Override  public void enqueue(OrderMessage message) {    List<String> args = Lists.newArrayList();    args.add(message.getOrderId());    args.add(String.valueOf(System.currentTimeMillis()));    args.add(message.getOrderId());    args.add(JSON.toJSONString(message));    try (Jedis jedis = jedisProvider.provide()) {      jedis.evalsha(ENQUEUE_LUA_SHA.get(), KEYS, args);    }  }  @Override  public List<OrderMessage> dequeue() {    // 30分鐘之前    String maxScore = String.valueOf(System.currentTimeMillis() - 30 * 60 * 1000);    return dequeue(MIN_SCORE, maxScore, OFFSET, LIMIT);  }  @SuppressWarnings("unchecked")  @Override  public List<OrderMessage> dequeue(String min, String max, String offset, String limit) {    List<String> args = new ArrayList<>();    args.add(max);    args.add(min);    args.add(offset);    args.add(limit);    List<OrderMessage> result = Lists.newArrayList();    try (Jedis jedis = jedisProvider.provide()) {      List<String> eval = (List<String>) jedis.evalsha(DEQUEUE_LUA_SHA.get(), KEYS, args);      if (null != eval) {        for (String e : eval) {          result.add(JSON.parseObject(e, OrderMessage.class));        }      }    }    return result;  }  @Override  public String enqueueSha() {    return ENQUEUE_LUA_SHA.get();  }  @Override  public String dequeueSha() {    return DEQUEUE_LUA_SHA.get();  }  @Override  public void afterPropertiesSet() throws Exception {    // 加載Lua腳本    loadLuaScript();  }  private void loadLuaScript() throws Exception {    try (Jedis jedis = jedisProvider.provide()) {      ClassPathResource resource = new ClassPathResource(ENQUEUE_LUA_SCRIPT_LOCATION);      String luaContent = StreamUtils.copyToString(resource.getInputStream(), StandardCharsets.UTF_8);      String sha = jedis.scriptLoad(luaContent);      ENQUEUE_LUA_SHA.compareAndSet(null, sha);      resource = new ClassPathResource(DEQUEUE_LUA_SCRIPT_LOCATION);      luaContent = StreamUtils.copyToString(resource.getInputStream(), StandardCharsets.UTF_8);      sha = jedis.scriptLoad(luaContent);      DEQUEUE_LUA_SHA.compareAndSet(null, sha);    }  }  public static void main(String[] as) throws Exception {    DateTimeFormatter f = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss.SSS");    JedisProvider jedisProvider = new JedisProvider();    jedisProvider.afterPropertiesSet();    RedisOrderDelayQueue queue = new RedisOrderDelayQueue(jedisProvider);    queue.afterPropertiesSet();    // 寫入測試數據    OrderMessage message = new OrderMessage();    message.setAmount(BigDecimal.valueOf(10086));    message.setOrderId("ORDER_ID_10086");    message.setUserId(10086L);    message.setTimestamp(LocalDateTime.now().format(f));    List<String> args = Lists.newArrayList();    args.add(message.getOrderId());    // 測試需要,score設置為30分鐘之前    args.add(String.valueOf(System.currentTimeMillis() - 30 * 60 * 1000));    args.add(message.getOrderId());    args.add(JSON.toJSONString(message));    try (Jedis jedis = jedisProvider.provide()) {      jedis.evalsha(ENQUEUE_LUA_SHA.get(), KEYS, args);    }    List<OrderMessage> dequeue = queue.dequeue();    System.out.println(dequeue);  }}

這里先執行一次 main() 方法驗證一下延遲隊列是否生效:

[OrderMessage(orderId=ORDER_ID_10086, amount=10086, userId=10086, timestamp=2019-08-21 08:32:22.885)]

確定延遲隊列的代碼沒有問題,接著編寫一個 QuartzJob 類型的消費者 OrderMessageConsumer

@DisallowConcurrentExecution@Componentpublic class OrderMessageConsumer implements Job {  private static final AtomicInteger COUNTER = new AtomicInteger();  private static final ExecutorService BUSINESS_WORKER_POOL = Executors.newFixedThreadPool(Runtime.getRuntime().availableProcessors(), r -> {    Thread thread = new Thread(r);    thread.setDaemon(true);    thread.setName("OrderMessageConsumerWorker-" + COUNTER.getAndIncrement());    return thread;  });  private static final Logger LOGGER = LoggerFactory.getLogger(OrderMessageConsumer.class);  @Autowired  private OrderDelayQueue orderDelayQueue;  @Override  public void execute(JobExecutionContext jobExecutionContext) throws JobExecutionException {    StopWatch stopWatch = new StopWatch();    stopWatch.start();    LOGGER.info("訂單消息處理定時任務開始執行......");    List<OrderMessage> messages = orderDelayQueue.dequeue();    if (!messages.isEmpty()) {      // 簡單的列表等分放到線程池中執行      List<List<OrderMessage>> partition = Lists.partition(messages, 2);      int size = partition.size();      final CountDownLatch latch = new CountDownLatch(size);      for (List<OrderMessage> p : partition) {        BUSINESS_WORKER_POOL.execute(new ConsumeTask(p, latch));      }      try {        latch.await();      } catch (InterruptedException ignore) {        //ignore      }    }    stopWatch.stop();    LOGGER.info("訂單消息處理定時任務執行完畢,耗時:{} ms......", stopWatch.getTotalTimeMillis());  }  @RequiredArgsConstructor  private static class ConsumeTask implements Runnable {    private final List<OrderMessage> messages;    private final CountDownLatch latch;    @Override    public void run() {      try {        // 實際上這里應該單條捕獲異常        for (OrderMessage message : messages) {          LOGGER.info("處理訂單信息,內容:{}", message);        }      } finally {        latch.countDown();      }    }  }}

上面的消費者設計的時候需要有以下考量:

  • 使用 @DisallowConcurrentExecution 注解不允許 Job 并發執行,其實多個 Job 并發執行意義不大,因為我們采用的是短間隔的輪詢,而 Redis 是單線程處理命令,在客戶端做多線程其實效果不佳。
  • 線程池 BUSINESS_WORKER_POOL 的線程容量或者隊列應該綜合 LIMIT 值、等分訂單信息列表中使用的 size 值以及 ConsumeTask 里面具體的執行時間進行考慮,這里只是為了方便使用了固定容量的線程池。
  • ConsumeTask 中應該對每一條訂單信息的處理單獨捕獲異常和吞并異常,或者把處理單個訂單信息的邏輯封裝成一個不拋出異常的方法。

其他 Quartz 相關的代碼:

// Quartz配置類@Configurationpublic class QuartzAutoConfiguration {  @Bean  public SchedulerFactoryBean schedulerFactoryBean(QuartzAutowiredJobFactory quartzAutowiredJobFactory) {    SchedulerFactoryBean factory = new SchedulerFactoryBean();    factory.setAutoStartup(true);    factory.setJobFactory(quartzAutowiredJobFactory);    return factory;  }  @Bean  public QuartzAutowiredJobFactory quartzAutowiredJobFactory() {    return new QuartzAutowiredJobFactory();  }  public static class QuartzAutowiredJobFactory extends AdaptableJobFactory implements BeanFactoryAware {    private AutowireCapableBeanFactory autowireCapableBeanFactory;    @Override    public void setBeanFactory(BeanFactory beanFactory) throws BeansException {      this.autowireCapableBeanFactory = (AutowireCapableBeanFactory) beanFactory;    }    @Override    protected Object createJobInstance(TriggerFiredBundle bundle) throws Exception {      Object jobInstance = super.createJobInstance(bundle);      // 這里利用AutowireCapableBeanFactory從新建的Job實例做一次自動裝配,得到一個原型(prototype)的JobBean實例      autowireCapableBeanFactory.autowireBean(jobInstance);      return jobInstance;    }  }}

這里暫時使用了內存態的 RAMJobStore 去存放任務和觸發器的相關信息,如果在生產環境最好替換成基于 MySQL 也就是 JobStoreTX 進行集群化,最后是啟動函數和 CommandLineRunner 的實現:

@SpringBootApplication(exclude = {DataSourceAutoConfiguration.class, TransactionAutoConfiguration.class})public class Application implements CommandLineRunner {  @Autowired  private Scheduler scheduler;  @Autowired  private JedisProvider jedisProvider;  public static void main(String[] args) {    SpringApplication.run(Application.class, args);  }  @Override  public void run(String... args) throws Exception {    // 準備一些測試數據    prepareOrderMessageData();    JobDetail job = JobBuilder.newJob(OrderMessageConsumer.class)        .withIdentity("OrderMessageConsumer", "DelayTask")        .build();    // 觸發器5秒觸發一次    Trigger trigger = TriggerBuilder.newTrigger()        .withIdentity("OrderMessageConsumerTrigger", "DelayTask")        .withSchedule(SimpleScheduleBuilder.simpleSchedule().withIntervalInSeconds(5).repeatForever())        .build();    scheduler.scheduleJob(job, trigger);  }  private void prepareOrderMessageData() throws Exception {    DateTimeFormatter f = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss.SSS");    try (Jedis jedis = jedisProvider.provide()) {      List<OrderMessage> messages = Lists.newArrayList();      for (int i = 0; i < 100; i++) {        OrderMessage message = new OrderMessage();        message.setAmount(BigDecimal.valueOf(i));        message.setOrderId("ORDER_ID_" + i);        message.setUserId((long) i);        message.setTimestamp(LocalDateTime.now().format(f));        messages.add(message);      }      // 這里暫時不使用Lua      Map<String, Double> map = Maps.newHashMap();      Map<String, String> hash = Maps.newHashMap();      for (OrderMessage message : messages) {        // 故意把score設計成30分鐘前        map.put(message.getOrderId(), Double.valueOf(String.valueOf(System.currentTimeMillis() - 30 * 60 * 1000)));        hash.put(message.getOrderId(), JSON.toJSONString(message));      }      jedis.zadd("ORDER_QUEUE", map);      jedis.hmset("ORDER_DETAIL_QUEUE", hash);    }  }}

輸出結果如下:

2019-08-21 22:45:59.518  INFO 33000 --- [ryBean_Worker-1] club.throwable.OrderMessageConsumer      : 訂單消息處理定時任務開始執行......
2019-08-21 22:45:59.525  INFO 33000 --- [onsumerWorker-4] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_91, amount=91, userId=91, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.525  INFO 33000 --- [onsumerWorker-2] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_95, amount=95, userId=95, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.525  INFO 33000 --- [onsumerWorker-1] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_97, amount=97, userId=97, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.525  INFO 33000 --- [onsumerWorker-0] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_99, amount=99, userId=99, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.525  INFO 33000 --- [onsumerWorker-3] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_93, amount=93, userId=93, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.539  INFO 33000 --- [onsumerWorker-2] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_94, amount=94, userId=94, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.539  INFO 33000 --- [onsumerWorker-1] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_96, amount=96, userId=96, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.539  INFO 33000 --- [onsumerWorker-3] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_92, amount=92, userId=92, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.539  INFO 33000 --- [onsumerWorker-0] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_98, amount=98, userId=98, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.539  INFO 33000 --- [onsumerWorker-4] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_90, amount=90, userId=90, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.540  INFO 33000 --- [ryBean_Worker-1] club.throwable.OrderMessageConsumer      : 訂單消息處理定時任務執行完畢,耗時:22 ms......
2019-08-21 22:46:04.515  INFO 33000 --- [ryBean_Worker-2] club.throwable.OrderMessageConsumer      : 訂單消息處理定時任務開始執行......
2019-08-21 22:46:04.516  INFO 33000 --- [onsumerWorker-5] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_89, amount=89, userId=89, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516  INFO 33000 --- [onsumerWorker-6] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_87, amount=87, userId=87, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516  INFO 33000 --- [onsumerWorker-7] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_85, amount=85, userId=85, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516  INFO 33000 --- [onsumerWorker-5] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_88, amount=88, userId=88, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516  INFO 33000 --- [onsumerWorker-2] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_83, amount=83, userId=83, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516  INFO 33000 --- [onsumerWorker-1] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_81, amount=81, userId=81, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516  INFO 33000 --- [onsumerWorker-6] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_86, amount=86, userId=86, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516  INFO 33000 --- [onsumerWorker-2] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_82, amount=82, userId=82, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516  INFO 33000 --- [onsumerWorker-7] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_84, amount=84, userId=84, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516  INFO 33000 --- [onsumerWorker-1] club.throwable.OrderMessageConsumer      : 處理訂單信息,內容:OrderMessage(orderId=ORDER_ID_80, amount=80, userId=80, timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516  INFO 33000 --- [ryBean_Worker-2] club.throwable.OrderMessageConsumer      : 訂單消息處理定時任務執行完畢,耗時:1 ms......
......

首次執行的時候涉及到一些組件的初始化,會比較慢,后面看到由于我們只是簡單打印訂單信息,所以定時任務執行比較快。如果在不調整當前架構的情況下,生產中需要注意:

  • 切換 JobStoreJDBC 模式, Quartz 官方有完整教程,或者看筆者之前翻譯的 Quartz 文檔。
  • 需要監控或者收集任務的執行狀態,添加預警等等。

這里其實有一個性能隱患,命令 ZREVRANGEBYSCORE 的時間復雜度可以視為為 O(N)N 是集合的元素個數,由于這里把所有的訂單信息都放進了同一個 Sorted Set ( ORDER_QUEUE )中,所以在一直有新增數據的時候, dequeue 腳本的時間復雜度一直比較高,后續訂單量升高之后會此處一定會成為性能瓶頸,后面會給出解決的方案。

小結

這篇文章主要從一個實際生產案例的仿真例子入手,分析了當前延時任務的一些實現方案,還基于 RedisQuartz 給出了一個完整的示例。當前的示例只是處于可運行的狀態,有些問題尚未解決。下一篇文章會著眼于解決兩個方面的問題:

  1. 分片。
  2. 監控。

還有一點, 架構是基于業務形態演進出來的,很多東西需要結合場景進行方案設計和改進,思路僅供參考,切勿照搬代碼 。

以上所述是小編給大家介紹的使用Redis實現延時任務的解決方案,非常不錯,具有一定的參考借鑒價值,需要的朋友參考下吧!

發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 久久精品视频网站 | 国产精品一区二区在线 | 成人黄视频在线观看 | 91毛片网站 | chinesehdxxxx无套| 午夜影院在线免费观看 | 免费毛片儿| 噜噜噜躁狠狠躁狠狠精品视频 | 日韩av片网站 | 亚洲午夜1000理论片aa | 黄色网址免费进入 | 污片视频网站 | 欧美2区| 日韩精品中文字幕一区二区 | 成年免费网站 | 欧美一级毛片免费观看 | 国产午夜精品在线 | 久久久久久久久久综合 | 欧美一级特黄a | 二区三区四区视频 | a级高清免费毛片av在线 | 黑人操穴 | 国产成年人小视频 | 久草手机在线 | 国产盼盼私拍福利视频99 | 国内精品久久久久影院不卡 | 免费观看一区二区三区 | 久久久久久久久久亚洲 | 国产精品成人免费一区久久羞羞 | 国产精品免费看 | 日韩欧美中文字幕视频 | 免费一级毛片在线播放视频 | jizzjizzjizz少妇 | 最新一区二区三区 | 亚洲91网| 在线看免费的a | 91成人亚洲| 国产亚洲精品久久久久久久 | 久久草草亚洲蜜桃臀 | 亚洲91精品 | 日日做夜夜操 |