學習java的同學注意了!!! 學習過程中遇到什么問題或者想獲取學習資源的話,歡迎加入Java學習交流群,群號碼:183993990 我們一起學Java!
本文將會圍繞線程池的生命周期,分析線程池執(zhí)行任務的過程。
線程池狀態(tài)
首先認識兩個貫穿線程池代碼的參數(shù):
runState:線程池運行狀態(tài)workerCount:工作線程的數(shù)量線程池用一個32位的int來同時保存runState和workerCount,其中高3位是runState,其余29位是workerCount。代碼中會反復使用runStateOf和workerCountOf來獲取runState和workerCount。
PRivate final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));private static final int COUNT_BITS = Integer.SIZE - 3;private static final int CAPACITY = (1 << COUNT_BITS) - 1;// 線程池狀態(tài)private static final int RUNNING = -1 << COUNT_BITS;private static final int SHUTDOWN = 0 << COUNT_BITS;private static final int STOP = 1 << COUNT_BITS;private static final int TIDYING = 2 << COUNT_BITS;private static final int TERMINATED = 3 << COUNT_BITS;// ctl操作private static int runStateOf(int c) { return c & ~CAPACITY; }private static int workerCountOf(int c) { return c & CAPACITY; }private static int ctlOf(int rs, int wc) { return rs | wc; }RUNNING:可接收新任務,可執(zhí)行等待隊列里的任務SHUTDOWN:不可接收新任務,可執(zhí)行等待隊列里的任務STOP:不可接收新任務,不可執(zhí)行等待隊列里的任務,并且嘗試終止所有在運行任務TIDYING:所有任務已經終止,執(zhí)行terminated()TERMINATED:terminated()執(zhí)行完成線程池狀態(tài)默認從RUNNING開始流轉,到狀態(tài)TERMINATED結束,中間不需要經過每一種狀態(tài),但不能讓狀態(tài)回退。下面是狀態(tài)變化可能的路徑和變化條件:
圖1 線程池狀態(tài)變化路徑
Worker的創(chuàng)建
線程池是由Worker類負責執(zhí)行任務,Worker繼承了AbstractQueuedSynchronizer,引出了Java并發(fā)框架的核心AQS。
AbstractQueuedSynchronizer,簡稱AQS,是Java并發(fā)包里一系列同步工具的基礎實現(xiàn),原理是根據(jù)狀態(tài)位來控制線程的入隊阻塞、出隊喚醒來處理同步。
AQS不會在這里展開討論,只需要知道Worker包裝了Thread,由它去執(zhí)行任務。
調用execute將會根據(jù)線程池的情況創(chuàng)建Worker,可以歸納出下圖四種情況:
圖2 worker在線程池里的四種可能
public void execute(Runnable command) { if (command == null) throw new NullPointerException(); int c = ctl.get(); //1 if (workerCountOf(c) < corePoolSize) { if (addWorker(command, true)) return; c = ctl.get(); } //2 if (isRunning(c) && workQueue.offer(command)) { int recheck = ctl.get(); if (! isRunning(recheck) && remove(command)) //3 reject(command); else if (workerCountOf(recheck) == 0) //4 addWorker(null, false); } //5 else if (!addWorker(command, false)) //6 reject(command);}標記1對應第一種情況,要留意addWorker傳入了core,core=true為corePoolSize,core=false為maximumPoolSize,新增時需要檢查workerCount是否超過允許的最大值。
標記2對應第二種情況,檢查線程池是否在運行,并且將任務加入等待隊列。標記3再檢查一次線程池狀態(tài),如果線程池忽然處于非運行狀態(tài),那就將等待隊列剛加的任務刪掉,再交給RejectedExecutionHandler處理。標記4發(fā)現(xiàn)沒有worker,就先補充一個空任務的worker。
標記5對應第三種情況,等待隊列不能再添加任務了,調用addWorker添加一個去處理。
標記6對應第四種情況,addWorker的core傳入false,返回調用失敗,代表workerCount已經超出maximumPoolSize,那就交給RejectedExecutionHandler處理。
private boolean addWorker(Runnable firstTask, boolean core) { //1 retry: for (;;) { int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary. if (rs >= SHUTDOWN && ! (rs == SHUTDOWN && firstTask == null && ! workQueue.isEmpty())) return false; for (;;) { int wc = workerCountOf(c); if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize)) return false; if (compareAndIncrementWorkerCount(c)) break retry; c = ctl.get(); // Re-read ctl if (runStateOf(c) != rs) continue retry; // else CAS failed due to workerCount change; retry inner loop } } //2 boolean workerStarted = false; boolean workerAdded = false; Worker w = null; try { w = new Worker(firstTask); final Thread t = w.thread; if (t != null) { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { // Recheck while holding lock. // Back out on ThreadFactory failure or if // shut down before lock acquired. int rs = runStateOf(ctl.get()); if (rs < SHUTDOWN || (rs == SHUTDOWN && firstTask == null)) { if (t.isAlive()) // precheck that t is startable throw new IllegalThreadStateException(); workers.add(w); int s = workers.size(); if (s > largestPoolSize) largestPoolSize = s; workerAdded = true; } } finally { mainLock.unlock(); } if (workerAdded) { t.start(); workerStarted = true; } } } finally { if (! workerStarted) addWorkerFailed(w); } return workerStarted; }標記1的第一段代碼,目的很簡單,是為workerCount加一。至于為什么代碼寫了這么長,是因為線程池的狀態(tài)在不斷變化,并發(fā)環(huán)境下需要保證變量的同步性。外循環(huán)判斷線程池狀態(tài)、任務非空和隊列非空,內循環(huán)使用CAS機制保證workerCount正確地遞增。不了解CAS可以看認識非阻塞的同步機制CAS,后續(xù)增減workerCount都會使用CAS。
標記2的第二段代碼,就比較簡單。創(chuàng)建一個新Worker對象,將Worker添加進workers里(Set集合)。成功添加后,啟動worker里的線程。在finally里判斷線程是否啟動成功,不成功直接調用addWorkerFailed。
private void addWorkerFailed(Worker w) { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { if (w != null) workers.remove(w); decrementWorkerCount(); tryTerminate(); } finally { mainLock.unlock(); } }addWorkerFailed將減少已經遞增的workerCount,并且調用tryTerminate結束線程池。
Worker的執(zhí)行
Worker(Runnable firstTask) { setState(-1); // inhibit interrupts until runWorker this.firstTask = firstTask; this.thread = getThreadFactory().newThread(this);}public void run() { runWorker(this);}Worker在構造函數(shù)里采用ThreadFactory創(chuàng)建Thread,在run方法里調用了runWorker,看來是真正執(zhí)行任務的地方。
final void runWorker(Worker w) { Thread wt = Thread.currentThread(); Runnable task = w.firstTask; w.firstTask = null; w.unlock(); // allow interrupts boolean completedAbruptly = true; try { //1 while (task != null || (task = getTask()) != null) { w.lock(); //2 if ((runStateAtLeast(ctl.get(), STOP) || (Thread.interrupted() && runStateAtLeast(ctl.get(), STOP))) && !wt.isInterrupted()) wt.interrupt(); try { //3 beforeExecute(wt, task); Throwable thrown = null; try { task.run(); } catch (RuntimeException x) { thrown = x; throw x; } catch (Error x) { thrown = x; throw x; } catch (Throwable x) { thrown = x; throw new Error(x); } finally { afterExecute(task, thrown); } } finally { task = null; //4 w.completedTasks++; w.unlock(); } } completedAbruptly = false; //5 } finally { //6 processWorkerExit(w, completedAbruptly); }}標記1進入循環(huán),從getTask獲取要執(zhí)行的任務,直到返回null。這里達到了線程復用的效果,讓線程處理多個任務。
標記2是一個比較復雜的判斷,保證了線程池在STOP狀態(tài)下線程是中斷的,非STOP狀態(tài)下線程沒有被中斷。如果你不了解Java的中斷機制,看如何正確結束Java線程這篇。
標記3調用了run方法,真正執(zhí)行了任務。執(zhí)行前后提供了beforeExecute和afterExecute兩個方法,由子類實現(xiàn)。
標記4里的completedTasks統(tǒng)計worker執(zhí)行了多少任務,最后累加進completedTaskCount變量,可以調用相應方法返回一些統(tǒng)計信息。
標記5的變量completedAbruptly表示worker是否異常終止,執(zhí)行到這里代表執(zhí)行正常,后續(xù)的方法需要這個變量。
標記6調用processWorkerExit結束,后面會分析。
接著來看worker從等待隊列獲取任務的getTask方法:
private Runnable getTask() { boolean timedOut = false; // Did the last poll() time out? for (;;) { int c = ctl.get(); int rs = runStateOf(c); //1 // Check if queue empty only if necessary. if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) { decrementWorkerCount(); return null; } int wc = workerCountOf(c); //2 // Are workers subject to culling? boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; if ((wc > maximumPoolSize || (timed && timedOut)) && (wc > 1 || workQueue.isEmpty())) { if (compareAndDecrementWorkerCount(c)) return null; continue; } //3 try { Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take(); if (r != null) return r; timedOut = true; } catch (InterruptedException retry) { timedOut = false; } }}標記1檢查線程池的狀態(tài),這里就體現(xiàn)出SHUTDOWN和STOP的區(qū)別。如果線程池是SHUTDOWN狀態(tài),還會先處理完等待隊列的任務;如果是STOP狀態(tài),就不再處理等待隊列里的任務了。
標記2先看allowCoreThreadTimeOut這個變量,false時worker空閑,也不會結束;true時,如果worker空閑超過keepAliveTime,就會結束。接著是一個很復雜的判斷,好難轉成文字描述,自己看吧。注意一下wc>maximumPoolSize,出現(xiàn)這種可能是在運行中調用setMaximumPoolSize,還有wc>1,在等待隊列非空時,至少保留一個worker。
標記3是從等待隊列取任務的邏輯,根據(jù)timed分為等待keepAliveTime或者阻塞直到有任務。
最后來看結束worker需要執(zhí)行的操作:
private void processWorkerExit(Worker w, boolean completedAbruptly) { //1 if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted decrementWorkerCount(); //2 final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { completedTaskCount += w.completedTasks; workers.remove(w); } finally { mainLock.unlock(); } //3 tryTerminate(); int c = ctl.get(); //4 if (runStateLessThan(c, STOP)) { if (!completedAbruptly) { int min = allowCoreThreadTimeOut ? 0 : corePoolSize; if (min == 0 && ! workQueue.isEmpty()) min = 1; if (workerCountOf(c) >= min) return; // replacement not needed } addWorker(null, false); }}正常情況下,在getTask里就會將workerCount減一。標記1處用變量completedAbruptly判斷worker是否異常退出,如果是,需要補充對workerCount的減一。
標記2將worker處理任務的數(shù)量累加到總數(shù),并且在集合workers中去除。
標記3嘗試終止線程池,后續(xù)會研究。
標記4處理線程池還是RUNNING或SHUTDOWN狀態(tài)時,如果worker是異常結束,那么會直接addWorker。如果allowCoreThreadTimeOut=true,并且等待隊列有任務,至少保留一個worker;如果allowCoreThreadTimeOut=false,workerCount不少于corePoolSize。
總結一下worker:線程池啟動后,worker在池內創(chuàng)建,包裝了提交的Runnable任務并執(zhí)行,執(zhí)行完就等待下一個任務,不再需要時就結束。
線程池的關閉
線程池的關閉不是一關了事,worker在池里處于不同狀態(tài),必須安排好worker的”后事”,才能真正釋放線程池。ThreadPoolExecutor提供兩種方法關閉線程池:
shutdown:不能再提交任務,已經提交的任務可繼續(xù)運行;shutdownNow:不能再提交任務,已經提交但未執(zhí)行的任務不能運行,在運行的任務可繼續(xù)運行,但會被中斷,返回已經提交但未執(zhí)行的任務。public void shutdown() { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { checkShutdownaccess(); //1 安全策略機制 advanceRunState(SHUTDOWN); //2 interruptIdleWorkers(); //3 onShutdown(); //4 空方法,子類實現(xiàn) } finally { mainLock.unlock(); } tryTerminate(); //5}shutdown將線程池切換到SHUTDOWN狀態(tài),并調用interruptIdleWorkers請求中斷所有空閑的worker,最后調用tryTerminate嘗試結束線程池。
public List<Runnable> shutdownNow() { List<Runnable> tasks; final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { checkShutdownAccess(); advanceRunState(STOP); interruptWorkers(); tasks = drainQueue(); //1 } finally { mainLock.unlock(); } tryTerminate(); return tasks;}shutdownNow和shutdown類似,將線程池切換為STOP狀態(tài),中斷目標是所有worker。drainQueue會將等待隊列里未執(zhí)行的任務返回。
interruptIdleWorkers和interruptWorkers實現(xiàn)原理都是遍歷workers集合,中斷條件符合的worker。
上面的代碼多次出現(xiàn)調用tryTerminate,這是一個嘗試將線程池切換到TERMINATED狀態(tài)的方法。
final void tryTerminate() { for (;;) { int c = ctl.get(); //1 if (isRunning(c) || runStateAtLeast(c, TIDYING) || (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty())) return; //2 if (workerCountOf(c) != 0) { // Eligible to terminate interruptIdleWorkers(ONLY_ONE); return; } //3 final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) { try { terminated(); } finally { ctl.set(ctlOf(TERMINATED, 0)); termination.signalAll(); } return; } } finally { mainLock.unlock(); } // else retry on failed CAS }}標記1檢查線程池狀態(tài),下面幾種情況,后續(xù)操作都沒有必要,直接return。
RUNNING(還在運行,不能停)TIDYING或TERMINATED(已經沒有在運行的worker)SHUTDOWN并且等待隊列非空(執(zhí)行完才能停)標記2在worker非空的情況下又調用了interruptIdleWorkers,你可能疑惑在shutdown時已經調用過了,為什么又調用,而且每次只中斷一個空閑worker?你需要知道,shutdown時worker可能在執(zhí)行中,執(zhí)行完阻塞在隊列的take,不知道要結束,所有要補充調用interruptIdleWorkers。每次只中斷一個是因為processWorkerExit時,還會執(zhí)行tryTerminate,自動中斷下一個空閑的worker。
標記3是最終的狀態(tài)切換。線程池會先進入TIDYING狀態(tài),再進入TERMINATED狀態(tài),中間提供了terminated這個空方法供子類實現(xiàn)。
調用關閉線程池方法后,需要等待線程池切換到TERMINATED狀態(tài)。awaitTermination檢查限定時間內線程池是否進入TERMINATED狀態(tài),代碼如下:
public boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException { long nanos = unit.toNanos(timeout); final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { for (;;) { if (runStateAtLeast(ctl.get(), TERMINATED)) return true; if (nanos <= 0) return false; nanos = termination.awaitNanos(nanos); } } finally { mainLock.unlock(); }}后言
以上過了一遍線程池主要的邏輯,總體來看線程池的設計是很清晰的。如有錯誤或不足,歡迎指出,也歡迎留言交流。今次介紹了線程池運行的生命周期,下篇會研究更細粒度地控制任務的生命周期,也就是submit和Future。
學習Java的同學注意了!!! 學習過程中遇到什么問題或者想獲取學習資源的話,歡迎加入Java學習交流群,群號碼:183993990 我們一起學Java!
|
新聞熱點
疑難解答