麻豆小视频在线观看_中文黄色一级片_久久久成人精品_成片免费观看视频大全_午夜精品久久久久久久99热浪潮_成人一区二区三区四区

首頁 > 數據庫 > MongoDB > 正文

MongoDB磁盤IO問題的3種解決方法

2020-10-29 18:43:44
字體:
來源:轉載
供稿:網友

IO概念

在數據庫優化和存儲規劃過程中,總會提到IO的一些重要概念,在這里就詳細記錄一下,對這個概念的熟悉程度也決定了對數據庫與存儲優化的理解程度,以下這些概念并非權威文檔,權威程度肯定就不能說了。

讀/寫IO,最為常見說法,讀IO,就是發指令,從磁盤讀取某段扇區的內容。指令一般是通知磁盤開始扇區位置,然后給出需要從這個初始扇區往后讀取的連續扇區個數,同時給出動作是讀,還是寫。磁盤收到這條指令,就會按照指令的要求,讀或者寫數據。控制器發出的這種指令+數據,就是一次IO,讀或者寫。

大/小塊IO,指控制器的指令中給出的連續讀取扇區數目的多少,如果數目很大,比如128,64等等,就應該算是大塊IO,如果很小,比如1, 4,8等等,就應該算是小塊IO,大塊和小塊之間,沒有明確的界限。

連續/隨機IO,連續和隨機,是指本次IO給出的初始扇區地址,和上一次IO的結束扇區地址,是不是完全連續的,或者相隔不多的,如果是,則本次IO應該算是一個連續IO,如果相差太大,則算一次隨機IO。連續IO,因為本次初始扇區和上次結束扇區相隔很近,則磁頭幾乎不用換道或換道時間極短;如果相差太大,則磁頭需要很長的換道時間,如果隨機IO很多,導致磁頭不停換道,效率大大降底。

順序/并發IO,這個的意思是,磁盤控制器每一次對磁盤組發出的指令套(指完成一個事物所需要的指令或者數據),是一條還是多條。如果是一條,則控制器緩存中的IO隊列,只能一個一個的來,此時是順序IO;如果控制器可以同時對磁盤組中的多塊磁盤,同時發出指令套,則每次就可以執行多個IO,此時就是并發IO模式。并發IO模式提高了效率和速度。

IO并發幾率。單盤,IO并發幾率為0,因為一塊磁盤同時只可以進行一次IO。對于raid0,2塊盤情況下,條帶深度比較大的時候(條帶太小不能并發IO,下面會講到),并發2個IO的幾率為1/2。其他情況請自行運算。

IOPS。一個IO所用的時間=尋道時間+數據傳輸時間。 IOPS=IO并發系數/(尋道時間+數據傳輸時間),由于尋道時間相對傳輸時間,大幾個數量級,所以影響IOPS的關鍵因素,就是降底尋道時間,而在連續IO的情況下,尋道時間很短,僅在換磁道時候需要尋道。在這個前提下,傳輸時間越少,IOPS就越高。

每秒IO吞吐量。顯然,每秒IO吞吐量=IOPS乘以平均IO SIZE。 Io size越大,IOPS越高,每秒IO吞吐量就越高。設磁頭每秒讀寫數據速度為V,V為定值。則IOPS=IO并發系數/(尋道時間+IO SIZE/V),代入,得每秒IO吞吐量=IO并發系數乘IO SIZE乘V/(V乘尋道時間+IO SIZE)。我們可以看出影響每秒IO吞吐量的最大因素,就是IO SIZE和尋道時間,IO SIZE越大,尋道時間越小,吞吐量越高。相比能顯著影響IOPS的因素,只有一個,就是尋道時間。

MongoDB磁盤IO問題的3種解決方法

1.使用組合式的大文檔

我們知道MongoDB是一個文檔數據庫,其每一條記錄都是一個JSON格式的文檔。比如像下面的例子,每一天會生成一條這樣的統計數據:

  { metric: content_count, client: 5, value: 51, date: ISODate(2012-04-01 13:00) }

  { metric: content_count, client: 5, value: 49, date: ISODate(2012-04-02 13:00) }

而如果采用組合式大文檔的話,就可以這樣將一個月的數據全部存到一條記錄里:

  { metric: content_count, client: 5, month: 2012-04, 1: 51, 2: 49, ... }

通過上面兩種方式存儲,預先一共存儲大約7GB的數據(機器只有1.7GB的內存),測試讀取一年信息,這二者的讀性能差別很明顯:

  第一種: 1.6秒

  第二種: 0.3秒

  那么問題在哪里呢?

實際上原因是組合式的存儲在讀取數據的時候,可以讀取更少的文檔數量。而讀取文檔如果不能完全在內存中的話,其代價主要是被花在磁盤seek上,第一種存儲方式在獲取一年數據時,需要讀取的文檔數更多,所以磁盤seek的數量也越多。所以更慢。

實際上MongoDB的知名使用者foursquare就大量采用這種方式來提升讀性能。

2.采用特殊的索引結構

我們知道,MongoDB和傳統數據庫一樣,都是采用B樹作為索引的數據結構。對于樹形的索引來說,保存熱數據使用到的索引在存儲上越集中,索引浪費掉的內存也越小。所以我們對比下面兩種索引結構:

  db.metrics.ensureIndex({ metric: 1, client: 1, date: 1}) 與 db.metrics.ensureIndex({ date: 1, metric: 1, client: 1 })

采用這兩種不同的結構,在插入性能上的差別也很明顯。

當采用第一種結構時,數據量在2千萬以下時,能夠基本保持10k/s 的插入速度,而當數據量再增大,其插入速度就會慢慢降低到2.5k/s,當數據量再增大時,其性能可能會更低。

而采用第二種結構時,插入速度能夠基本穩定在10k/s。

其原因是第二種結構將date字段放在了索引的第一位,這樣在構建索引時,新數據更新索引時,不是在中間去更新的,只是在索引的尾巴處進行修改。那些插入時間過早的索引在后續的插入操作中幾乎不需要進行修改。而第一種情況下,由于date字段不在最前面,所以其索引更新經常是發生在樹結構的中間,導致索引結構會經常進行大規模的變化。

3.預留空間

與第1點相同,這一點同樣是考慮到傳統機械硬盤的主要操作時間是花在磁盤seek操作上。

比如還是拿第1點中的例子來說,我們在插入數據的時候,預先將這一年的數據需要的空間都一次性插入。這能保證我們這一年12個月的數據是在一條記錄中,是順序存儲在磁盤上的,那么在讀取的時候,我們可能只需要一次對磁盤的順序讀操作就能夠讀到一年的數據,相比前面的12次讀取來說,磁盤seek也只有一次。

  db.metrics.insert([  { metric: content_count, client: 3, date: 2012-01, 0: 0, 1: 0, 2: 0, ... }  { .................................., date:  { .................................., date:  { .................................., date:  { .................................., date:  { .................................., date:  { .................................., date:  { .................................., date:  { .................................., date:  { .................................., date:  { .................................., date:  { .................................., date:  ])

結果:

  如果不采用預留空間的方式,讀取一年的記錄需要62ms

  如果采用預留空間的方式,讀取一年的記錄只需要6.6ms

總結

以上就是這篇文章的全部內容了,希望本文的內容對大家的學習或者工作具有一定的參考學習價值,如果有疑問大家可以留言交流,謝謝大家對武林網的支持。

發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: www.成人免费视频 | 久久亚洲精品国产一区 | av成人免费在线观看 | 一区二区三区在线观看av | 黄色特级毛片 | 成人做爽爽爽爽免费国产软件 | 久久国产精品久久久久 | 日本不卡一区二区三区在线 | 欧美高清第一页 | 性日本xxx | 久久久久久久.comav | 亚洲射逼 | 久久福利小视频 | 久久精品免费网站 | 成人黄视频在线观看 | 久久国产精品二国产精品中国洋人 | 日本s级毛片免费观看 | 91看片在线播放 | 美女视频大全网站免费 | 久草手机视频在线观看 | 毛片a片免费看 | 欧美一级免费高清 | 一区二区三区在线视频观看58 | 成人午夜天堂 | 毛片网站视频 | 国产毛片视频 | 欧美激情猛片xxxⅹ大3 | 午夜小视频免费观看 | 福利在线国产 | 黄色免费播放网站 | 成人网在线观看 | 久久最新免费视频 | 欧美亚洲国产成人 | 久久黄色影院 | 91成人免费在线视频 | 另类亚洲孕妇分娩网址 | 黄视频网址 | 精品国产一区二区久久 | 午夜精品久久久久久中宇 | 免费欧美一级视频 | 成人午夜免费福利 |