麻豆小视频在线观看_中文黄色一级片_久久久成人精品_成片免费观看视频大全_午夜精品久久久久久久99热浪潮_成人一区二区三区四区

首頁 > 開發 > Java > 正文

elasticsear 安裝 java集成使用

2024-07-21 02:53:12
字體:
來源:轉載
供稿:網友

Elasticsearch查詢操作

Elasticsearch部署

通過SSH Secure Shell連接工具,將ES文件上傳到linux系統相應目錄,解壓 在linux環境,進入ES目錄的bin目錄運行命令./elasticsearch安裝es-head插件,進入elasticsearch/bin目錄,輸入命令./plugin  install mobz/elasticsearch-head 安裝head插件。修改elasticsearch.yml:新增cluster.name: pangu;node.name: node-1;network.host: 192.168.45.31在瀏覽器中輸入http://localhost:9200,http://localhost:9200/_plugin/head/如下圖所示則ES啟動成功。

Elasticsearch文檔格式

索引中最基本的單元叫做文檔 document. 在es中文檔的示例如下:

{

"_index": "questions",

"_type": "baichebao",

"_id": "4",

"_score": 1,

"_version" : 1,

"_source": {

"id": 4,

"content": "汽車常見故障的解決辦法有哪些?",

"uid": 1,

"all_answer_count": 2,

"series_id": 0,

"score": 0,

"answer_count": 2

}

文檔中下劃線開頭的是es自帶的字段

_index 代表索引名_type 代表類型_id 代表文檔id,如果插入文檔的時候沒有設置id的話,那么es會自動生成一個唯一id_score 這個不是文檔自帶的,而是進行搜索的時候返回的,代表這個文檔和搜索的相關匹配分值_source 儲存原始文本及分類好的字段_version 代表這個文檔的版本

Restful結構化查詢(DSL)

一:terms查詢

         如果你想要找到所有售價等于10000美刀的車,那么可以使用一個terms查詢:

GET /cars/transactions/_search

{

  "query": {

    "term": {

      " PRice ": "10000"

    }

  }

}

二:filtered查詢

如果你想要找到所有售價高于10000美刀的車,那么可以使用一個filtered查詢:

POST /cars/transactions/_search

{

    "query" : {

        "filtered": {

            "filter": {

                "range": {

                    "price": {

                        "gte": 10000

                    }

                }

            }

        }

    }

}

 

該查詢(包含了一個過濾器)返回文檔的一個特定子集,然后聚合工作在該子集上。

 

三:agg聚合查詢

對索引中全部的車計算其平均價格

POST /cars/transactions/_search

{

  "aggs": {

    "car_avg": {

      "avg": {

         "field": "price"

      }

    }

  }

}

 

四:過濾聚合聯合查詢

如果你想要找到所有售價高于10000美刀的車,同時也對這些車計算其平均價格,那么可以這樣查詢:

POST /cars/transactions/_search

{

    "query" : {

        "filtered": {

            "filter": {

                "range": {

                    "price": {

                        "gte": 10000

                    }

                }

            }

        }

    },

    "aggs" : {

        " car_avg ": {

            "avg" : { "field" : "price" }

        }

    }

五:聚合嵌套查詢

如果你想要找到不同顏色的車的數量,并且計算不同顏色的車的平均價錢,那么可以這樣查詢

POST /cars/transactions/_search

{

  "aggs": {

    "colors": {

      "terms": {

        "field": "color"

      },

      "aggs": {

        "avg_price": {

          "avg": {

            "field": "price"

          }

        }

      }

    }

  }

}

 

六:聚合并列查詢

如果你想要找到不同顏色的車的數量,還要知道全部車的平均價錢,那么可以這樣查詢

{

  "aggs": {

    "avg_price": {

      "avg": {

        "field": "price"

      }

    },

    "colors": {

      "terms": {

        "field": "color"

      }

    }

  }

}

七:綜合查詢

         場景:查詢出某一天adtype(廣告位id)為2的數據每小時有幾條,每小時的總收益和平均收益

{

  "query": {

    "bool": {

      "must": [

        {

          "term": {

            "adtype": "2"

          }

        },

        {

          "match_all": {}

        }

      ],

      "must_not": [],

      "should": []

    }

  },

  "from": 0,

  "size": 20,

  "sort": [],

  "aggs": {

    "adxtime": {

      "date_histogram": {

        "field": "adx_reporttime",

        "interval": "1h",

        "min_doc_count": 0

      },

      "aggs": {

        "sum_price": {

          "sum": {

            "field": "price"

          }

        },

        "avg_price": {

          "avg": {

            "field": "price"

          }

        }

      }

    }

  }

}

java client查詢

一:獲取es客戶端

         Settings settings = Settings.settingsBuilder()

                                  .put("cluster.name", "pangu")

                                  .put("client.transport.sniff", true) //允許嗅探

                                  .build();

         Client client = TransportClient.builder()

                                  .settings(settings) //設置部分

                                  .build()

                                  .addTransportAddress(

new InetSocketTransportAddress(InetAddress.getByName("192.168.33.203"), 9300));

                                  .addTransportAddress(

new InetSocketTransportAddress(InetAddress.getByName("192.168.33.204"), 9300));

 

二:簡單查詢(對應restful查詢第一點)

         BoolQueryBuilder qb = QueryBuilders.boolQuery();

         qb.must(new  QueryStringQueryBuilder("10000").field("" price "));

         SearchResponse response = client

                                     .prepareSearch("cars ")

                                     .setTypes("transactions ")

                                     .setSearchType(SearchType.DEFAULT).setFrom(0).setSize(10)

                                     .setQuery(qb)

                                     .execute().actionGet();

for (SearchHit hit : response.getHits().getHits()) {

         System.out.println(hit.getSource().get("price"));

}

三:聚合嵌套查詢(對應restful查詢第五點)

             AggregationBuilder aggs = AggregationBuilders.terms("colors").field(

                                     "color");

                   aggs.subAggregation(AggregationBuilders.avg("avg_price").field("price"));

                  

                   SearchResponse response = client

                                     .prepareSearch("cars")

                                     .setTypes("transactions")

                                     .setSearchType(SearchType.DEFAULT)

                                     .addAggregation(aggs)

                                     .execute().actionGet();

                  

                   Terms terms = response.getAggregations().get("colors");

                   for (Bucket b : terms.getBuckets()) {

                            System.out.print(b.getKey() + "有:");

                            System.out.println(b.getDocCount() + " 輛");

                           

                            Avg avg =  b.getAggregations().get("avg_price");

                            System.out.print(b.getKey() + "平均:");

                            System.out.println(avg.getValue()+ "元");

                   }

        

 

四:聚合并列查詢(對應restful查詢第六點)

AggregationBuilder aggs1 = AggregationBuilders.terms("avg_price").field(

                                     "price");

                   AggregationBuilder aggs2 = AggregationBuilders.terms("colors").field(

                                     "color");

                  

                   SearchResponse response = client

                                     .prepareSearch("cars")

                                     .setTypes("transactions")

                                     .setSearchType(SearchType.DEFAULT)

                                     .addAggregation(aggs1)

                                     .addAggregation(aggs2)

                                     .execute().actionGet();

                   Avg avg =  response.getAggregations().get("avg_price");

                   System.out.println(avg.getValue()+ "元");

 

                  

                   Terms terms = response.getAggregations().get("colors");

                   for (Bucket b : terms.getBuckets()) {

                            System.out.print(b.getKey() + "有:");

                            System.out.println(b.getDocCount() + " 輛");

                   }

 

五:綜合查詢

    場景:查詢出某一天adtype(廣告位id)為2的數據每小時有幾條,每小時的總收益和平均收益

String str = "ad_detail_model";

String indexs[] = str.split(",");

BoolQueryBuilder qb = QueryBuilders.boolQuery();

qb.must(new  QueryStringQueryBuilder("2").field("adtype"));

DateHistogramInterval d1 = new DateHistogramInterval("1h");

AggregationBuilder aggs1 = AggregationBuilders.dateHistogram("timeAgg")

.field("adx_reporttime").interval(d1).minDocCount(0);

aggs1.subAggregation(AggregationBuilders.sum("sumAgg").field("price"));

aggs1.subAggregation(AggregationBuilders.avg("avgAgg").field("price"));

SearchResponse response = client

                                     .prepareSearch(indexs)

                                     .setSearchType(SearchType.DEFAULT)

                                     .setQuery(qb)

                                     .addAggregation(aggs1)

                                     .execute().actionGet();

Histogram agg = response.getAggregations().get("timeAgg");

System.out.println("===================================");

for (Histogram.Bucket entry : agg.getBuckets()) {

                            System.out.println("*******************************************");

                            Sum sum =  entry.getAggregations().get("sumAgg");

                            System.out.print(entry.getKey() + "總共有:");

                            System.out.println(sum.getValue()+ "元");

                           

                            Avg avg =  entry.getAggregations().get("avgAgg");

                            System.out.print(entry.getKey() + "平均有:");

                            System.out.println(avg.getValue()+ "元");

                           

                            String key = ""+ entry.getKey();    // Key

                       String keyAsString = entry.getKeyAsString(); // Key as String

                       long docCount = entry.getDocCount();         // Doc count

                       System.out.println(keyAsString+"有:"+docCount+" 個");

                       System.out.println("*******************************************");

                   }

System.out.println("===================================");


發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 精品一区二区久久久 | 久久小视频| 免费国产人成网站 | 亚洲第一综合 | 免费毛片在线 | 亚洲综合精品 | 久久羞羞 | 毛片毛片免费看 | 中文字幕精品在线观看 | 国产成人自拍视频在线观看 | 国产一级免费在线视频 | 最新久久免费视频 | 亚洲午夜久久久精品一区二区三区 | 黄色免费av网站 | 国产正在播放 | 毛片福利| 依人在线视频 | 黄色网址免费入口 | 精品一区二区久久久久 | 成人短视频在线观看 | 性生活视频一级 | 日本网站在线看 | 国产精品久久久久久久久久久久久久久久 | 欧美日韩高清一区二区三区 | 欧美成人一区免费视频 | 午夜精品久久久久久中宇 | 黄色免费小网站 | 极品一级片 | 亚洲精品一区二区三区大胸 | 国产精品wwww | 欧美黄色大片免费观看 | 一日本道久久久精品国产 | 91av久久 | 亚洲天堂中文字幕在线观看 | 婷婷中文字幕一区二区三区 | 一本免费视频 | 新久草在线视频 | 国产一区二区三区视频观看 | hd欧美free性xxxx护土 | 国产91精品久久久久久 | 国产精品无码久久久久 |