我就廢話不多說,直接上代碼吧!
# -*- coding: utf-8 -*-import cv2import numpy as npfrom find_obj import filter_matches,explore_matchfrom matplotlib import pyplot as plt def getSift(): ''' 得到并查看sift特征 ''' img_path1 = '../../data/home.jpg' #讀取圖像 img = cv2.imread(img_path1) #轉(zhuǎn)換為灰度圖 gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #創(chuàng)建sift的類 sift = cv2.SIFT() #在圖像中找到關(guān)鍵點 也可以一步計算#kp, des = sift.detectAndCompute kp = sift.detect(gray,None) print type(kp),type(kp[0]) #Keypoint數(shù)據(jù)類型分析 /uploads/cj/201912/4041399.html',img) plt.imshow(img),plt.show() def matchSift(): ''' 匹配sift特征 ''' img1 = cv2.imread('../../data/box.png', 0) # queryImage img2 = cv2.imread('../../data/box_in_scene.png', 0) # trainImage sift = cv2.SIFT() kp1, des1 = sift.detectAndCompute(img1, None) kp2, des2 = sift.detectAndCompute(img2, None) # 蠻力匹配算法,有兩個參數(shù),距離度量(L2(default),L1),是否交叉匹配(默認(rèn)false) bf = cv2.BFMatcher() #返回k個最佳匹配 matches = bf.knnMatch(des1, des2, k=2) # cv2.drawMatchesKnn expects list of lists as matches. #opencv2.4.13沒有drawMatchesKnn函數(shù),需要將opencv2.4.13/sources/samples/python2下的common.py和find_obj文件放入當(dāng)前目錄,并導(dǎo)入 p1, p2, kp_pairs = filter_matches(kp1, kp2, matches) explore_match('find_obj', img1, img2, kp_pairs) # cv2 shows image cv2.waitKey() cv2.destroyAllWindows() def matchSift3(): ''' 匹配sift特征 ''' img1 = cv2.imread('../../data/box.png', 0) # queryImage img2 = cv2.imread('../../data/box_in_scene.png', 0) # trainImage sift = cv2.SIFT() kp1, des1 = sift.detectAndCompute(img1, None) kp2, des2 = sift.detectAndCompute(img2, None) # 蠻力匹配算法,有兩個參數(shù),距離度量(L2(default),L1),是否交叉匹配(默認(rèn)false) bf = cv2.BFMatcher() #返回k個最佳匹配 matches = bf.knnMatch(des1, des2, k=2) # cv2.drawMatchesKnn expects list of lists as matches. #opencv3.0有drawMatchesKnn函數(shù) # Apply ratio test # 比值測試,首先獲取與A 距離最近的點B(最近)和C(次近),只有當(dāng)B/C # 小于閾值時(0.75)才被認(rèn)為是匹配,因為假設(shè)匹配是一一對應(yīng)的,真正的匹配的理想距離為0 good = [] for m, n in matches: if m.distance < 0.75 * n.distance: good.append([m]) img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, good[:10], None, flags=2) cv2.drawm plt.imshow(img3), plt.show() matchSift()
以上這篇opencv-python 提取sift特征并匹配的實例就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持武林網(wǎng)之家。
新聞熱點
疑難解答