麻豆小视频在线观看_中文黄色一级片_久久久成人精品_成片免费观看视频大全_午夜精品久久久久久久99热浪潮_成人一区二区三区四区

首頁 > 學院 > 邏輯算法 > 正文

算法系列15天速成――第十三天 樹操作【下】

2024-09-08 23:18:41
字體:
來源:轉載
供稿:網友

聽說赫夫曼勝過了他的導師,被認為”青出于藍而勝于藍“,這句話也是我比較欣賞的,嘻嘻。

一  概念

    了解”赫夫曼樹“之前,幾個必須要知道的專業名詞可要熟練記住啊。

    1: 結點的權

            “權”就相當于“重要度”,我們形象的用一個具體的數字來表示,然后通過數字的大小來決定誰重要,誰不重要。

    2: 路徑

             樹中從“一個結點"到“另一個結點“之間的分支。

    3: 路徑長度

             一個路徑上的分支數量。

    4: 樹的路徑長度

             從樹的根節點到每個節點的路徑長度之和。

    5: 節點的帶權路徑路勁長度

             其實也就是該節點到根結點的路徑長度*該節點的權。

    6:   樹的帶權路徑長度

             樹中各個葉節點的路徑長度*該葉節點的權的和,常用WPL(Weight Path Length)表示。

二: 構建赫夫曼樹

        上面說了那么多,肯定是為下面做鋪墊,這里說赫夫曼樹,肯定是要說赫夫曼樹咋好咋好,赫夫曼樹是一種最優二叉樹,

         因為他的WPL是最短的,何以見得?我們可以上圖說話。

現在我們做一個WPL的對比:

圖A: WPL= 5*2 + 7*2 +2*2+13*2=54

圖B:WPL=5*3+2*3+7*2+13*1=48

 

我們對比一下,圖B的WPL最短的,地球人已不能阻止WPL還能比“圖B”的小,所以,“圖B"就是一顆赫夫曼樹,那么大家肯定

要問,如何構建一顆赫夫曼樹,還是上圖說話。

 

第一步: 我們將所有的節點都作為獨根結點。

第二步:   我們將最小的C和A組建為一個新的二叉樹,權值為左右結點之和。

第三步: 將上一步組建的新節點加入到剩下的節點中,排除上一步組建過的左右子樹,我們選中B組建新的二叉樹,然后取權值。

第四步: 同上。

 

三: 赫夫曼編碼

      大家都知道,字符,漢字,數字在計算機中都是以0,1來表示的,相應的存儲都是有一套編碼方案來支撐的,比如ASC碼。

 這樣才能在"編碼“和”解碼“的過程中不會成為亂碼,但是ASC碼不理想的地方就是等長的,其實我們都想用較少的空間來存儲

更多的東西,那么我們就要采用”不等長”的編碼方案來存儲,那么“何為不等長呢“?其實也就是出現次數比較多的字符我們采用短編碼,

出現次數較少的字符我們采用長編碼,恰好,“赫夫曼編碼“就是不等長的編碼。

    這里大家只要掌握赫夫曼樹的編碼規則:左子樹為0,右子樹為1,對應的編碼后的規則是:從根節點到子節點

A: 111

B: 10

C: 110

D: 0

 

四: 實現

      不知道大家懂了沒有,不懂的話多看幾篇,下面說下赫夫曼的具體實現。

         第一步:構建赫夫曼樹。

         第二步:對赫夫曼樹進行編碼。

         第三步:壓縮操作。

         第四步:解壓操作。

 

1:首先看下赫夫曼樹的結構,這里字段的含義就不解釋了。

復制代碼 代碼如下:

#region 赫夫曼樹結構
    /// <summary>
/// 赫夫曼樹結構
/// </summary>
    public class HuffmanTree
    {
        public int weight { get; set; }

        public int parent { get; set; }

        public int left { get; set; }

        public int right { get; set; }
    }
    #endregion

2: 創建赫夫曼樹,原理在上面已經解釋過了,就是一步一步的向上搭建,這里要注意的二個性質定理:

         當葉子節點為N個,則需要N-1步就能搭建赫夫曼樹。

         當葉子節點為N個,則赫夫曼樹的節點總數為:(2*N)-1個。

復制代碼 代碼如下:

#region 赫夫曼樹的創建
        /// <summary>
/// 赫夫曼樹的創建
/// </summary>
/// <param name="huffman">赫夫曼樹</param>
/// <param name="leafNum">葉子節點</param>
/// <param name="weight">節點權重</param>
        public HuffmanTree[] CreateTree(HuffmanTree[] huffman, int leafNum, int[] weight)
        {
            //赫夫曼樹的節點總數
            int huffmanNode = 2 * leafNum - 1;

            //初始化節點,賦予葉子節點值
            for (int i = 0; i < huffmanNode; i++)
            {
                if (i < leafNum)
                {
                    huffman[i].weight = weight[i];
                }
            }

            //這里面也要注意,4個節點,其實只要3步就可以構造赫夫曼樹
            for (int i = leafNum; i < huffmanNode; i++)
            {
                int minIndex1;
                int minIndex2;
                SelectNode(huffman, i, out minIndex1, out minIndex2);

                //最后得出minIndex1和minindex2中實體的weight最小
                huffman[minIndex1].parent = i;
                huffman[minIndex2].parent = i;

                huffman[i].left = minIndex1;
                huffman[i].right = minIndex2;

                huffman[i].weight = huffman[minIndex1].weight + huffman[minIndex2].weight;
            }

            return huffman;
        }
        #endregion

        #region 選出葉子節點中最小的二個節點
        /// <summary>
/// 選出葉子節點中最小的二個節點
/// </summary>
/// <param name="huffman"></param>
/// <param name="searchNodes">要查找的結點數</param>
/// <param name="minIndex1"></param>
/// <param name="minIndex2"></param>
        public void SelectNode(HuffmanTree[] huffman, int searchNodes, out int minIndex1, out int minIndex2)
        {
            HuffmanTree minNode1 = null;

            HuffmanTree minNode2 = null;

            //最小節點在赫夫曼樹中的下標
            minIndex1 = minIndex2 = 0;

            //查找范圍
            for (int i = 0; i < searchNodes; i++)
            {
                ///只有獨根樹才能進入查找范圍
                if (huffman[i].parent == 0)
                {
                    //如果為null,則認為當前實體為最小
                    if (minNode1 == null)
                    {
                        minIndex1 = i;

                        minNode1 = huffman[i];

                        continue;
                    }

                    //如果為null,則認為當前實體為最小
                    if (minNode2 == null)
                    {
                        minIndex2 = i;

                        minNode2 = huffman[i];

                        //交換一個位置,保證minIndex1為最小,為后面判斷做準備
                        if (minNode1.weight > minNode2.weight)
                        {
                            //節點交換
                            var temp = minNode1;
                            minNode1 = minNode2;
                            minNode2 = temp;

                            //下標交換
                            var tempIndex = minIndex1;
                            minIndex1 = minIndex2;
                            minIndex2 = tempIndex;

                            continue;
                        }
                    }
                    if (minNode1 != null && minNode2 != null)
                    {
                        if (huffman[i].weight <= minNode1.weight)
                        {
                            //將min1臨時轉存給min2
                            minNode2 = minNode1;
                            minNode1 = huffman[i];

                            //記錄在數組中的下標
                            minIndex2 = minIndex1;
                            minIndex1 = i;
                        }
                        else
                        {
                            if (huffman[i].weight < minNode2.weight)
                            {
                                minNode2 = huffman[i];

                                minIndex2 = i;
                            }
                        }
                    }
                }
            }
        }
        #endregion

3:對哈夫曼樹進行編碼操作,形成一套“模板”,效果跟ASC模板一樣,不過一個是不等長,一個是等長。

復制代碼 代碼如下:

#region 赫夫曼編碼
        /// <summary>
/// 赫夫曼編碼
/// </summary>
/// <param name="huffman"></param>
/// <param name="leafNum"></param>
/// <param name="huffmanCode"></param>
        public string[] HuffmanCoding(HuffmanTree[] huffman, int leafNum)
        {
            int current = 0;

            int parent = 0;

            string[] huffmanCode = new string[leafNum];

            //四個葉子節點的循環
            for (int i = 0; i < leafNum; i++)
            {
                //單個字符的編碼串
                string codeTemp = string.Empty;

                current = i;

                //第一次獲取最左節點
                parent = huffman[current].parent;

                while (parent != 0)
                {
                    //如果父節點的左子樹等于當前節點就標記為0
                    if (current == huffman[parent].left)
                        codeTemp += "0";
                    else
                        codeTemp += "1";

                    current = parent;
                    parent = huffman[parent].parent;
                }

                huffmanCode[i] = new string(codeTemp.Reverse().ToArray());
            }
            return huffmanCode;
        }
        #endregion

4:模板生成好了,我們就要對指定的測試數據進行壓縮處理

復制代碼 代碼如下:

#region 對指定字符進行壓縮
        /// <summary>
/// 對指定字符進行壓縮
/// </summary>
/// <param name="huffmanCode"></param>
/// <param name="alphabet"></param>
/// <param name="test"></param>
        public string Encode(string[] huffmanCode, string[] alphabet, string test)
        {
            //返回的0,1代碼
            string encodeStr = string.Empty;

            //對每個字符進行編碼
            for (int i = 0; i < test.Length; i++)
            {
                //在模版里面查找
                for (int j = 0; j < alphabet.Length; j++)
                {
                    if (test[i].ToString() == alphabet[j])
                    {
                        encodeStr += huffmanCode[j];
                    }
                }
            }

            return encodeStr;
        }
        #endregion

5: 最后也就是對壓縮的數據進行還原操作。

復制代碼 代碼如下:

#region 對指定的二進制進行解壓
        /// <summary>
/// 對指定的二進制進行解壓
/// </summary>
/// <param name="huffman"></param>
/// <param name="leafNum"></param>
/// <param name="alphabet"></param>
/// <param name="test"></param>
/// <returns></returns>
        public string Decode(HuffmanTree[] huffman, int huffmanNodes, string[] alphabet, string test)
        {
            string decodeStr = string.Empty;

            //所有要解碼的字符
            for (int i = 0; i < test.Length; )
            {
                int j = 0;
                //赫夫曼樹結構模板(用于循環的解碼單個字符)
                for (j = huffmanNodes - 1; (huffman[j].left != 0 || huffman[j].right != 0); )
                {
                    if (test[i].ToString() == "0")
                    {
                        j = huffman[j].left;
                    }
                    if (test[i].ToString() == "1")
                    {
                        j = huffman[j].right;
                    }
                    i++;
                }
                decodeStr += alphabet[j];
            }
            return decodeStr;
        }

        #endregion

最后上一下總的運行代碼

復制代碼 代碼如下:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace HuffmanTree
{
    class Program
    {
        static void Main(string[] args)
        {
            //有四個葉節點
            int leafNum = 4;

            //赫夫曼樹中的節點總數
            int huffmanNodes = 2 * leafNum - 1;

            //各節點的權值
            int[] weight = { 5, 7, 2, 13 };

            string[] alphabet = { "A", "B", "C", "D" };

            string testCode = "DBDBDABDCDADBDADBDADACDBDBD";

            //赫夫曼樹用數組來保存,每個赫夫曼都作為一個實體存在
            HuffmanTree[] huffman = new HuffmanTree[huffmanNodes].Select(i => new HuffmanTree() { }).ToArray();

            HuffmanTreeManager manager = new HuffmanTreeManager();

            manager.CreateTree(huffman, leafNum, weight);

            string[] huffmanCode = manager.HuffmanCoding(huffman, leafNum);

            for (int i = 0; i < leafNum; i++)
            {
                Console.WriteLine("字符:{0},權重:{1},編碼為:{2}", alphabet[i], huffman[i].weight, huffmanCode[i]);
            }

            Console.WriteLine("原始的字符串為:" + testCode);

            string encode = manager.Encode(huffmanCode, alphabet, testCode);

            Console.WriteLine("被編碼的字符串為:" + encode);

            string decode = manager.Decode(huffman, huffmanNodes, alphabet, encode);

            Console.WriteLine("解碼后的字符串為:" + decode);
        }
    }

    #region 赫夫曼樹結構
    /// <summary>
/// 赫夫曼樹結構
/// </summary>
    public class HuffmanTree
    {
        public int weight { get; set; }

        public int parent { get; set; }

        public int left { get; set; }

        public int right { get; set; }
    }
    #endregion

    /// <summary>
/// 赫夫曼樹的操作類
/// </summary>
    public class HuffmanTreeManager
    {
        #region 赫夫曼樹的創建
        /// <summary>
/// 赫夫曼樹的創建
/// </summary>
/// <param name="huffman">赫夫曼樹</param>
/// <param name="leafNum">葉子節點</param>
/// <param name="weight">節點權重</param>
        public HuffmanTree[] CreateTree(HuffmanTree[] huffman, int leafNum, int[] weight)
        {
            //赫夫曼樹的節點總數
            int huffmanNode = 2 * leafNum - 1;

            //初始化節點,賦予葉子節點值
            for (int i = 0; i < huffmanNode; i++)
            {
                if (i < leafNum)
                {
                    huffman[i].weight = weight[i];
                }
            }

            //這里面也要注意,4個節點,其實只要3步就可以構造赫夫曼樹
            for (int i = leafNum; i < huffmanNode; i++)
            {
                int minIndex1;
                int minIndex2;
                SelectNode(huffman, i, out minIndex1, out minIndex2);

                //最后得出minIndex1和minindex2中實體的weight最小
                huffman[minIndex1].parent = i;
                huffman[minIndex2].parent = i;

                huffman[i].left = minIndex1;
                huffman[i].right = minIndex2;

                huffman[i].weight = huffman[minIndex1].weight + huffman[minIndex2].weight;
            }

            return huffman;
        }
        #endregion

        #region 選出葉子節點中最小的二個節點
        /// <summary>
/// 選出葉子節點中最小的二個節點
/// </summary>
/// <param name="huffman"></param>
/// <param name="searchNodes">要查找的結點數</param>
/// <param name="minIndex1"></param>
/// <param name="minIndex2"></param>
        public void SelectNode(HuffmanTree[] huffman, int searchNodes, out int minIndex1, out int minIndex2)
        {
            HuffmanTree minNode1 = null;

            HuffmanTree minNode2 = null;

            //最小節點在赫夫曼樹中的下標
            minIndex1 = minIndex2 = 0;

            //查找范圍
            for (int i = 0; i < searchNodes; i++)
            {
                ///只有獨根樹才能進入查找范圍
                if (huffman[i].parent == 0)
                {
                    //如果為null,則認為當前實體為最小
                    if (minNode1 == null)
                    {
                        minIndex1 = i;

                        minNode1 = huffman[i];

                        continue;
                    }

                    //如果為null,則認為當前實體為最小
                    if (minNode2 == null)
                    {
                        minIndex2 = i;

                        minNode2 = huffman[i];

                        //交換一個位置,保證minIndex1為最小,為后面判斷做準備
                        if (minNode1.weight > minNode2.weight)
                        {
                            //節點交換
                            var temp = minNode1;
                            minNode1 = minNode2;
                            minNode2 = temp;

                            //下標交換
                            var tempIndex = minIndex1;
                            minIndex1 = minIndex2;
                            minIndex2 = tempIndex;

                            continue;
                        }
                    }
                    if (minNode1 != null && minNode2 != null)
                    {
                        if (huffman[i].weight <= minNode1.weight)
                        {
                            //將min1臨時轉存給min2
                            minNode2 = minNode1;
                            minNode1 = huffman[i];

                            //記錄在數組中的下標
                            minIndex2 = minIndex1;
                            minIndex1 = i;
                        }
                        else
                        {
                            if (huffman[i].weight < minNode2.weight)
                            {
                                minNode2 = huffman[i];

                                minIndex2 = i;
                            }
                        }
                    }
                }
            }
        }
        #endregion

        #region 赫夫曼編碼
        /// <summary>
/// 赫夫曼編碼
/// </summary>
/// <param name="huffman"></param>
/// <param name="leafNum"></param>
/// <param name="huffmanCode"></param>
        public string[] HuffmanCoding(HuffmanTree[] huffman, int leafNum)
        {
            int current = 0;

            int parent = 0;

            string[] huffmanCode = new string[leafNum];

            //四個葉子節點的循環
            for (int i = 0; i < leafNum; i++)
            {
                //單個字符的編碼串
                string codeTemp = string.Empty;

                current = i;

                //第一次獲取最左節點
                parent = huffman[current].parent;

                while (parent != 0)
                {
                    //如果父節點的左子樹等于當前節點就標記為0
                    if (current == huffman[parent].left)
                        codeTemp += "0";
                    else
                        codeTemp += "1";

                    current = parent;
                    parent = huffman[parent].parent;
                }

                huffmanCode[i] = new string(codeTemp.Reverse().ToArray());
            }
            return huffmanCode;
        }
        #endregion

        #region 對指定字符進行壓縮
        /// <summary>
/// 對指定字符進行壓縮
/// </summary>
/// <param name="huffmanCode"></param>
/// <param name="alphabet"></param>
/// <param name="test"></param>
        public string Encode(string[] huffmanCode, string[] alphabet, string test)
        {
            //返回的0,1代碼
            string encodeStr = string.Empty;

            //對每個字符進行編碼
            for (int i = 0; i < test.Length; i++)
            {
                //在模版里面查找
                for (int j = 0; j < alphabet.Length; j++)
                {
                    if (test[i].ToString() == alphabet[j])
                    {
                        encodeStr += huffmanCode[j];
                    }
                }
            }

            return encodeStr;
        }
        #endregion

        #region 對指定的二進制進行解壓
        /// <summary>
/// 對指定的二進制進行解壓
/// </summary>
/// <param name="huffman"></param>
/// <param name="leafNum"></param>
/// <param name="alphabet"></param>
/// <param name="test"></param>
/// <returns></returns>
        public string Decode(HuffmanTree[] huffman, int huffmanNodes, string[] alphabet, string test)
        {
            string decodeStr = string.Empty;

            //所有要解碼的字符
            for (int i = 0; i < test.Length; )
            {
                int j = 0;
                //赫夫曼樹結構模板(用于循環的解碼單個字符)
                for (j = huffmanNodes - 1; (huffman[j].left != 0 || huffman[j].right != 0); )
                {
                    if (test[i].ToString() == "0")
                    {
                        j = huffman[j].left;
                    }
                    if (test[i].ToString() == "1")
                    {
                        j = huffman[j].right;
                    }
                    i++;
                }
                decodeStr += alphabet[j];
            }
            return decodeStr;
        }

        #endregion
    }
}

發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 日本高清无遮挡 | 欧美性受xxxx白人性爽 | 午夜影院日韩 | 热@国产| 久久久久久久一区二区 | 久久艹精品 | 福利免费在线观看 | 精品国产一区二区三区在线观看 | 91 在线免费观看 | 欧美毛片在线观看 | 99日韩精品视频 | 欧美一区二区片 | 欧美大电影免费观看 | 在线看免电影网站 | 国产一区二区三区网站 | 一区二区三区日本在线观看 | jizzyouxxxx | 国产精品成人一区二区三区吃奶 | 免费国产视频在线观看 | 黑人一级片视频 | 在线a亚洲视频播放在线观看 | 毛片免费在线 | 久久不射电影 | 成人精品久久 | 视频在线中文字幕 | 国产精品久久久久久238 | 一本一道久久久a久久久精品91 | 亚洲免费视 | 一区二区三区黄色 | 久久国产精品久久久久久电车 | 久久精品毛片 | 亚洲国产高清视频 | 中文字幕一区二区三区四区 | 中文字幕在线视频网站 | 小情侣嗯啊哦视频www | 日本精品视频一区二区三区四区 | 国产一级在线看 | 中文字幕在线播放第一页 | 久久久久久亚洲综合影院红桃 | 欧美日韩在线影院 | 国产一区二区三区四区五区在线 |